914 resultados para Proteína P53
Resumo:
Os produtos de controle biológico devem ser produzidos com custo competitivo em relação aos sintéticos para que seu uso se torne generalizado. A fermentação é uma das etapas mais caras para o escalonamento da produção por causa do valor dos ingredientes dos meios de cultura. Neste trabalho, Pichia kudriavzevii L9, um agente de controle de podridão pós-colheita de frutas, foi utilizada como modelo para a avaliação de hidrolisado de proteína de soja como fonte de nitrogênio em meio de cultura líquido. Foram testadas cinco concentrações de proteína de soja (50 L-1 a 250 g L-1) em solução aquosa contendo concentrações de H2SO4 de 0 a 1,0 N, tratadas em autoclave a 121 ºC e 1,0 atm de pressão. Após o resfriamento, o produto obtido foi alcalinizado com KOH até atingir o pH de 6,0 ? 7,0. Nas condições do experimento, a melhor condição para a hidrólise do proteinato de soja e obtenção de maior concentração de aminoácidos no meio, foi de 200 g L-1 de proteinato em solução de HCl 0,5 N, produzindo 32,1 g L-1 de aminoácido livre, quantificado pelo método da ninhidrina. O hidrolisado foi utilizado para o crescimento de P. kudriavzevii L9, obtendo-se a maior produtividade de células viáveis de levedura com a adição de 2% do hidrolisado obtido no meio de cultura, na faixa entre 0,2 a 0,5 N de HCL.
Resumo:
Objetivou-se desenvolver modelos para prever a concentração de proteína bruta (PB) e a digestibilidade in vitro da matéria seca (DIVMS) deste alimento por meio da espectroscopia NIR avaliando duas formas de preparação da amostra e dois equipamentos NIR. Conclui-se, que modelos desenvolvidos com espectros de vagem de algaroba pré-secas e moídas, tanto em equipamento Perten quanto em FOSS, foram considerados confiáveis e com desempenho superior àqueles desenvolvidos com amostras frescas.
Resumo:
2015
Resumo:
2016
Resumo:
O objetivo deste trabalho foi avaliar um grupo de 20 genótipos de feijão-caupi, sendo 19 linhagens e uma cultivar, com tamanho extragrande do grão para as concentrações de proteínas, ferro e zinco.
Resumo:
2016
Resumo:
2016
Resumo:
A wide range of screening strategies have been employed to isolate antibodies and other proteins with specific attributes, including binding affinity, specificity, stability and improved expression. However, there remains no high-throughput system to screen for target-binding proteins in a mammalian, intracellular environment. Such a system would allow binding reagents to be isolated against intracellular clinical targets such as cell signalling proteins associated with tumour formation (p53, ras, cyclin E), proteins associated with neurodegenerative disorders (huntingtin, betaamyloid precursor protein), and various proteins crucial to viral replication (e.g. HIV-1 proteins such as Tat, Rev and Vif-1), which are difficult to screen by phage, ribosome or cell-surface display. This study used the β-lactamase protein complementation assay (PCA) as the display and selection component of a system for screening a protein library in the cytoplasm of HEK 293T cells. The colicin E7 (ColE7) and Immunity protein 7 (Imm7) *Escherichia coli* proteins were used as model interaction partners for developing the system. These proteins drove effective β-lactamase complementation, resulting in a signal-to-noise ratio (9:1 – 13:1) comparable to that of other β-lactamase PCAs described in the literature. The model Imm7-ColE7 interaction was then used to validate protocols for library screening. Single positive cells that harboured the Imm7 and ColE7 binding partners were identified and isolated using flow cytometric cell sorting in combination with the fluorescent β-lactamase substrate, CCF2/AM. A single-cell PCR was then used to amplify the Imm7 coding sequence directly from each sorted cell. With the screening system validated, it was then used to screen a protein library based the Imm7 scaffold against a proof-of-principle target. The wild-type Imm7 sequence, as well as mutants with wild-type residues in the ColE7- binding loop were enriched from the library after a single round of selection, which is consistent with other eukaryotic screening systems such as yeast and mammalian cell-surface display. In summary, this thesis describes a new technology for screening protein libraries in a mammalian, intracellular environment. This system has the potential to complement existing screening technologies by allowing access to intracellular proteins and expanding the range of targets available to the pharmaceutical industry.
Resumo:
Damage to genetic material represents a persistent and ubiquitous threat to genomic stability. Once DNA damage is detected, a multifaceted signaling network is activated that halts the cell cycle, initiates repair, and in some instances induces apoptotic cell death. In this article, we will review DNA damage surveillance networks, which maintain the stability of our genome, and discuss the efforts underway to identify chemotherapeutic compounds targeting the core components of DNA double-strand breaks (DSB) response pathway. The majority of tumor cells have defects in maintaining genomic stability owing to the loss of an appropriate response to DNA damage. New anticancer agents are exploiting this vulnerability of cancer cells to enhance therapeutic indexes, with limited normal tissue toxicity. Recently inhibitors of the checkpoint kinases Chk1 and Chk2 have been shown to sensitize tumor cells to DNA damaging agents. In addition, the treatment of BRCA1- or BRCA2-deficient tumor cells with poly(ADP-ribose) polymerase (PARP) inhibitors also leads to specific tumor killing. Due to the numerous roles of p53 in genomic stability and its defects in many human cancers, therapeutic agents that restore p53 activity in tumors are the subject of multiple clinical trials. In this article we highlight the proteins mentioned above and catalog several additional players in the DNA damage response pathway, including ATM, DNA-PK, and the MRN complex, which might be amenable to pharmacological interventions and lead to new approaches to sensitize cancer cells to radio- and chemotherapy. The challenge is how to identify those patients most receptive to these treatments.
Resumo:
Patients with metastatic melanoma or multiple myeloma have a dismal prognosis because these aggressive malignancies resist conventional treatment. A promising new oncologic approach uses molecularly targeted therapeutics that overcomes apoptotic resistance and, at the same time, achieves tumor selectivity. The unexpected selectivity of proteasome inhibition for inducing apoptosis in cancer cells, but not in normal cells, prompted us to define the mechanism of action for this class of drugs, including Food and Drug Administration-approved bortezomib. In this report, five melanoma cell lines and a myeloma cell line are treated with three different proteasome inhibitors (MG-132, lactacystin, and bortezomib), and the mechanism underlying the apoptotic pathway is defined. Following exposure to proteasome inhibitors, effective killing of human melanoma and myeloma cells, but not of normal proliferating melanocytes, was shown to involve p53-independent induction of the BH3-only protein NOXA. Induction of NOXA at the protein level was preceded by enhanced transcription of NOXA mRNA. Engagement of mitochondrial-based apoptotic pathway involved release of cytochrome c, second mitochondria-derived activator of caspases, and apoptosis-inducing factor, accompanied by a proteolytic cascade with processing of caspases 9, 3, and 8 and poly(ADP)-ribose polymerase. Blocking NOXA induction using an antisense (but not control) oligonucleotide reduced the apoptotic response by 30% to 50%, indicating a NOXA-dependent component in the overall killing of melanoma cells. These results provide a novel mechanism for overcoming the apoptotic resistance of tumor cells, and validate agents triggering NOXA induction as potential selective cancer therapeutics for life-threatening malignancies such as melanoma and multiple myeloma.
Resumo:
The CDKN2 gene, encoding the cyclin-dependent kinase inhibitor p16, is a tumour suppressor gene that maps to chromosome band 9p21-p22. The most common mechanism of inactivation of this gene in human cancers is through homozygous deletion; however, in a smaller proportion of tumours and tumour cell lines intragenic mutations occur. In this study we have compiled a database of over 120 published point mutations in the CDKN2 gene from a wide variety of tumour types. A further 50 deletions, insertions, and splice mutations in CDKN2 have also been compiled. Furthermore, we have standardised the numbering of all mutations according to the full-length 156 amino acid form of p16. From this study we are able to define several hot spots, some of which occur at conserved residues within the ankyrin domains of p16. While many of the hotspots are shared by a number of cancers, the relative importance of each position varies, possibly reflecting the role of different carcinogens in the development of certain tumours. As reported previously, the mutational spectrum of CDKN2 in melanomas differs from that of internal malignancies and supports the involvement of UV in melanoma tumorigenesis. Notably, 52% of all substitutions in melanoma-derived samples occurred at just six nucleotide positions. Nonsense mutations comprise a comparatively high proportion of mutations present in the CDKN2 gene, and possible explanations for this are discussed.
Resumo:
We conducted a clinical trial to compare the molecular and cellular responses of human melanocytes and keratinocytes in vivo to solar-simulated ultraviolet radiation (SSUVR) in 57 Caucasian participants grouped according to MC1R genotype. We found that, on average, the density of epidermal melanocytes 14 days after exposure to 2 minimal erythemal dose (MED) SSUVR was twofold higher than baseline (unirradiated) skin. However, the change in epidermal melanocyte counts among people carrying germline MC1R variants (97% increase) was significantly less than those with wild-type MC1R (164% increase; P = 0.01). We also found that sunscreen applied to the skin before exposure to 2 MED SSUVR completely blocked the effects of DNA damage, p53 induction, and cellular proliferation in both melanocytes and keratinocytes.
Resumo:
Lung cancer is the commonest cause of cancer death in the western world. Recent evidence suggests that angiogenesis is related to poor prognosis in many solid tumours including non-small cell lung cancer. Angiogenesis is controlled by a complex interaction between growth and apoptotic factors, proteases and adhesion molecules. The angiogenic process may prove a target for novel therapies such as matrix metalloproteinase inhibitors, growth factor antisense RNA, growth factor receptor antagonists and naturally occurring antiangiogenic peptides. These agents may be used alone or in combination with traditional chemotherapy, radiotherapy and surgery. (C) 2000 Elsevier Science Ireland Ltd.
Resumo:
Tumour angiogenesis is an important factor for tumour growth and metastasis. Although some recent reports suggest that microvessel counts in non-small cell lung cancer are related to a poor disease outcome, the results were not conclusive and were not compared with other molecular prognostic markers. In the present study, the vascular grade was assessed in 107 (T1,2-N0,1) operable non-small cell lung carcinomas, using the JC70 monoclonal antibody to CD31. Three vascular grades were defined with appraisal by eye and by Chalkley counting: high (Chalkley score 7-12), medium (5-6), and low (2-4). There was a significant correlation between eye appraisal and Chalkley counting (P < 0.0001). Vascular grade was not related to histology, grade, proliferation index (Ki67), or EGFR or p53 expression. Tumours from younger patients had a higher grade of angiogenesis (P = 0.05). Apart from the vascular grade, none of the other factors examined was statistically related to lymph node metastasis (P < 0.0001). A univariate analysis of survival showed that vascular grade was the most significant prognostic factor (P = 0.0004), followed by N-stage (P = 0.001). In a multivariate analysis, N-stage and vascular grade were not found to be independent prognostic factors, since they were strongly related to each other. Excluding N-stage, vascular grade was the only independent prognostic factor (P = 0.007). Kaplan-Meier survival curves showed a statistically significant worse prognosis for patients with high vascular grade, but no difference was observed between low and medium vascular grade. These data suggest that angiogenesis in operable non-small cell lung cancer is a major prognostic factor for survival and, among the parameters tested, is the only factor related to cancer cell migration to lymph nodes. The integration of vascular grading in clinical trials on adjuvant chemotherapy and/or radiotherapy could substantially contribute in defining groups of operable patients who might benefit from cytotoxic treatment.
Resumo:
The recent advances in the understanding of the pathogenesis of ovarian cancer have been helpful in addressing issues in diagnosis, prognosis and management. The study of ovarian tumours by novel techniques such as immunohistochemistry, fluorescent in situ hybridisation, comparative genomic hybridisation, polymerase chain reaction and new tumour markers have aided the evaluation and application of new concepts into clinical practice. The correlation of novel surrogate tumour specific features with response to treatment and outcome in patients has defined prognostic factors which may allow the future design of tailored therapy based on a molecular profile of the tumour. These have also been used to design new approaches to therapy such as antibody targeting and gene therapy. The delineation of roles of c-erbB2, c-fms and other novel receptor kinases in the pathogenesis of ovarian cancer has led initially to the development of anti-c-erbB2 monoclonal antibody therapy. The discovery of BRCA1 and BRCA2 genes will have an impact in the diagnosis and the prevention of familial ovarian cancer. The important role played by recessive genes such as p53 in cancer has raised the possibility of restoration of gene function by gene therapy. Although the pathological diagnosis of ovarian cancer is still confirmed principally on morphological features, addition of newer investigations will increasingly be useful in addressing difficult diagnostic problems. The increasingly rapid pace of discovery of genes important in disease, makes it imperative that the evaluation of their contribution in the pathogenesis of ovarian cancer is undertaken swiftly, thus improving the overall management of patients and their outcome.