990 resultados para Pressure regulation
Resumo:
Rho GTPases integrate control of cell structure and adhesion with downstream signaling events. In keratinocytes, RhoA is activated at early times of differentiation and plays an essential function in establishment of cell-cell adhesion. We report here that, surprisingly, Rho signaling suppresses downstream gene expression events associated with differentiation. Similar inhibitory effects are exerted by a specific Rho effector, CRIK (Citron kinase), which is selectively down-modulated with differentiation, thereby allowing the normal process to occur. The suppressing function of Rho/CRIK on differentiation is associated with induction of KyoT1/2, a LIM domain protein gene implicated in integrin-mediated processes and/or Notch signaling. Like activated Rho and CRIK, elevated KyoT1/2 expression suppresses differentiation. Thus, Rho signaling exerts an unexpectedly complex role in keratinocyte differentiation, which is coupled with induction of KyoT1/2, a LIM domain protein gene with a potentially important role in control of cell self renewal.
Resumo:
Organisms from bacteria to humans have evolved under predictable daily environmental cycles owing to the Earth’s rotation. This strong selection pressure has generated endogenous circadian clocks that regulate many aspects of behaviour, physiology and metabolism, anticipating and synchronising internal time-keeping to changes in the cyclical environment. In haematophagous insect vectors the circadian clock coordinates feeding activity, which is important for the dynamics of pathogen transmission. We have recently witnessed a substantial advance in molecular studies of circadian clocks in insect vector species that has consolidated behavioural data collected over many years, which provided insights into the regulation of the clock in the wild. Next generation sequencing technologies will facilitate the study of vector genomes/transcriptomes both among and within species and illuminate some of the species-specific patterns of adaptive circadian phenotypes that are observed in the field and in the laboratory. In this review we will explore these recent findings and attempt to identify potential areas for further investigation.
Resumo:
Bone remodeling is regulated by the two branches of the autonomic nervous system: the adrenergic and the cholinergic branches. Adrenergic activity favors bone loss, whereas cholinergic activity has been recently shown to favor bone mass accrual. In vitro studies have reported that cholinergic activity induces proliferation and differentiation of bone cells. In vivo studies have shown that the inhibition of cholinergic activity favors bone loss, whereas its stimulation favors bone mass accrual. Clinical studies have shown that bone density is associated with the function of many cholinergic-regulated tissues such as the hypothalamus, salivary glands, lacrimal glands and langerhans cells, suggesting a common mechanism of control. Altogether, these observations and linked findings are of great significance since they improve our understanding of bone physiology. These discoveries have been successfully used recently to investigate new promising therapies for bone diseases based on cholinergic stimulation. Here, we review the current understanding of the cholinergic activity and its association with bone health.
Resumo:
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Resumo:
Blood pressure is abnormally elevated in acute stroke in most patients. This blood pressure increase is usually transient and associated with a poor prognosis. Lowering blood pressure too importantly during this period may worsen the outcome of the patient. Antihypertensive therapy is therefore required only when blood pressure is severely increased, especially in the presence of intracerebral haemorrhage. Initiating treatment before admission to the hospital is not recommended. The medications to be preferred are the blockers of the renin-angiotensin system, the beta-blocker labetalol (which possesses also alpha-blocking properties) and NO donors.
Resumo:
No earlier study has investigated the microbiology of negative pressure wound therapy (NPWT) foam using a standardized manner. The purpose of this study is to investigate the bacterial load and microbiological dynamics in NPWT foam removed from chronic wounds (>3 months). To determine the bacterial load, a standardized size of the removed NPWT foam was sonicated. The resulting sonication fluid was cultured, and the colony-forming units (CFU) of each species were enumerated. Sixty-eight foams from 17 patients (mean age 63 years, 71% males) were investigated. In 65 (97%) foams, â0/00¥âeuro0/001 and in 37 (54%) â0/00¥2 bacterial types were found. The bacterial load remained high during NPWT treatment, ranging from 10(4) to 10(6) CFU/ml. In three patients (27%), additional type of bacteria was found in subsequent foam cultures. The mean bacterial countâeuro0/00±âeuro0/00standard deviation was higher in polyvinyl alcohol foam (6.1âeuro0/00±âeuro0/000.5 CFU/ml) than in polyurethane (5.5âeuro0/00±âeuro0/000.8 CFU/ml) (pâeuro0/00=âeuro0/000.02). The mean of log of sum of CFU/ml in foam from 125âeuro0/00mmHg (5.5âeuro0/00±âeuro0/000.8) was lower than in foam from 100âeuro0/00mmHg pressure (5.9âeuro0/00±âeuro0/000.5) (pâeuro0/00=âeuro0/000.01). Concluding, bacterial load remains high in NPWT foam, and routine changing does not reduce the load.
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Resumo:
STUDY OBJECTIVES: We sought to determine the effect of expiratory positive airway pressure on end expiratory lung volume (EELV) and sleep disordered breathing in obstructive sleep apnea patients. DESIGN: Observational physiology study PARTICIPANTS: We studied 10 OSA patients during sleep wearing a facial mask. We recorded 1 hour of NREM sleep without treatment (baseline) and 1 hour with 10 cm H2O EPAP in random order, while measuring EELV and breathing pattern. RESULTS: The mean EELV change between baseline and EPAP was only 13.3 mL (range 2-25 mL). Expiratory time was significantly increased with EPAP compared to baseline 2.64 +/- 0.54 vs 2.16 +/- 0.64 sec (P = 0.002). Total respiratory time was longer with EPAP than at baseline 4.44 +/- 1.47 sec vs 3.73 +/- 0.88 sec (P = 0.3), and minute ventilation was lower with EPAP vs baseline 7.9 +/- 4.17 L/min vs 9.05 +/- 2.85 L/min (P = 0.3). For baseline (no treatment) and EPAP respectively, the mean apnea+hypopnea index (AHI) was 62.6 +/- 28.7 and 56.8 +/- 30.3 events per hour (P = 0.4). CONCLUSION: In OSA patients during sleep, the application of 10 cm H2O EPAP led to prolongation of expiratory time with only marginal increases in FRC. These findings suggest important mechanisms exist to avoid hyperinflation during sleep.
Resumo:
OBJECTIVE: : Identification of children with elevated blood pressure (BP) is difficult because of the multiple sex, age, and height-specific thresholds to define elevated BP. We propose a simple set of absolute height-specific BP thresholds and evaluate their performance to identify children with elevated BP in two different populations. METHODS: : Using the 95th sex, age, and relative-height BP US thresholds to define elevated BP in children (standard criteria), we derived a set of (non sex- and non age-specific) absolute height-specific BP thresholds for 11 height categories by 10 cm increments. Using data from large school-based surveys conducted in Switzerland (N = 5207; 2621 boys, 2586 girls; age range: 10.1-14.9 years) and in the Seychelles (N = 25 759; 13 048 boys, 12 711 girls; age range: 4.4-18.8 years), we evaluated the performance of these height-specific thresholds to identify children with elevated BP. We also derived sex-specific absolute height-specific BP thresholds and compared their performance. RESULTS: : In the Swiss and the Seychelles surveys, the prevalence of elevated BP (standard criteria) was 11.4 and 9.1%, respectively. The height-specific thresholds to identify elevated BP had a sensitivity of 80 and 84%, a specificity of 99 and 99%, a positive predictive value of 92 and 91%, and a negative predictive value of 97 and 98%, respectively. Performance of sex-specific absolute height-specific BP thresholds was similar. CONCLUSION: : A simple table of height-specific BP thresholds allowed identifying children with elevated BP with high sensitivity and excellent specificity.
Resumo:
Natural killer (NK) cells are capable of directly recognizing pathogens, pathogen-infected cells, and transformed cells. NK cells recognize target cells using approximately 100 germ-line encoded receptors, which display activating or inhibitory function. NK cell activation usually requires the engagement of more than one receptor, and these may contribute distinct signaling inputs that are required for the firm adhesion of NK cells to target cells, polarization, and the release of cytotoxic granules, as well as the production of cytokines. In this article we discuss receptor-mediated mechanisms that counteract NK cell activation. The distinct intracellular inhibitory signaling pathways and how they can dominantly interfere with NK cell activation signaling events are discussed first. In addition, mechanisms by which inhibitory receptors modulate cellular activation at the level of receptor-ligand interactions are described. Receptor-mediated inhibition of NK cell function serves three main purposes: ensuring tolerance of NK cells to normal cells, enabling NK cell responses to aberrant host cells that have lost an inhibitory ligand, and, finally, allowing the recognition of certain pathogens that do not express inhibitory ligands.
Resumo:
BACKGROUND Pressure ulcers are considered an important issue, mainly affecting immobilized older patients. These pressure ulcers increase the care burden for the professional health service staff as well as pharmaceutical expenditure. There are a number of studies on the effectiveness of different products used for the prevention of pressure ulcers; however, most of these studies were carried out at a hospital level, basically using hyperoxygenated fatty acids (HOFA). There are no studies focused specifically on the use of olive-oil-based products and therefore this research is intended to find the most cost-effective treatment and achieve an alternative treatment. METHODS/DESIGN The main objective is to assess the effectiveness of olive oil, comparing it with HOFA, to treat immobilized patients at home who are at risk of pressure ulcers. As a secondary objective, the cost-effectiveness balance of this new application with regard to the HOFA will be assessed. The study is designed as a noninferiority, triple-blinded, parallel, multi-center, randomized clinical trial. The scope of the study is the population attending primary health centers in Andalucía (Spain) in the regional areas of Malaga, Granada, Seville, and Cadiz. Immobilized patients at risk of pressure ulcers will be targeted. The target group will be treated by application of an olive-oil-based formula whereas the control group will be treated by application of HOFA to the control group. The follow-up period will be 16 weeks. The main variable will be the presence of pressure ulcers in the patient. Secondary variables include sociodemographic and clinical information, caregiver information, and whether technical support exists. Statistical analysis will include the Kolmogorov-Smirnov test, symmetry and kurtosis analysis, bivariate analysis using the Student's t and chi-squared tests as well as the Wilcoxon and the Man-Whitney U tests, ANOVA and multivariate logistic regression analysis. DISCUSSION The regular use of olive-oil-based formulas should be effective in preventing pressure ulcers in immobilized patients, thus leading to a more cost-effective product and an alternative treatment. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT01595347.
Resumo:
Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.
Resumo:
Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.