909 resultados para Polyelectrolyte Sequence
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
We sequenced 912 bp of the cytochrome-b gene to examine phylogenetic relationships of the enigmatic Saw-billed Hermit (Ramphodon naevius), a large and distinctive hummingbird endemic to tropical forests of southeastern Brazil. Bootstrapped maximum parsimony and maximum likelihood analyses of sequence data from 11 hummingbirds and several outgroups (two swifts, one goatsucker) support: (a) monophyly of the traditional hermit (Phaethornithinae) and nonhermit (Trochilinae) subfamilies, (b) placement of Ramphodon among hermits, and (c) a sister relationship between Ramphodon and an exemplar of the widespread polytypic hermit genus Glaucis. The association of Ramphodon with derived hermit lineages is concordant with subfamilial patterns of wing anatomy and nest architecture. However, the unusual plumages (striped underparts) and male bills (long, serrated, hooked) shared by Ramphodon and the Tooth-billed Hummingbird (Androdon aequatorialis) appear to have evolved within separate hermit and nonhermit tooth-billed clades. Distal placement of the Ramphodon-Glaucis clade within hermits implies that even distinctive Brazilian endemics such as Ramphodon are derived forms that evolved relatively recently.
Resumo:
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Resumo:
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.
Resumo:
This paper proposes a novel and simple positive sequence detector (PSD), which is inherently self-adjustable to fundamental frequency deviations by means of a software-based PLL (Phase Locked Loop). Since the proposed positive sequence detector is not based on Fortescue's classical decomposition and no special input filtering is needed, its dynamic response may be as fast as one fundamental cycle. The digital PLL ensures that the positive sequence components can be calculated even under distorted waveform conditions and fundamental frequency deviations. For the purpose of validating the proposed models, the positive sequence detector has been implemented in a PC-based Power Quality Monitor and experimental results illustrate its good performance. The PSD algorithm has also been evaluated in the control loop of a Series Active Filter and simulation results demonstrate its effectiveness in a closed-loop system. Moreover, considering single-phase applications, this paper also proposes a general single-phase PLL and a Fundamental Wave Detector (FWD) immune to frequency variations and waveform distortions. © 2005 IEEE.
Resumo:
Cysticercosis is one of the most important zoonosis, not only because of the effects on animal health and its economic consequences, but also due to the serious danger it poses to humans. The two main parasites involved in the taeniasis-cysticercosis complex in Brazil are Taenia saginata and Taenia solium. Differentiating between these two parasites is important both for disease control and for epidemiological studies. The purpose of this work was to identify genetic markers that could be used to differentiate these parasites. Out of 120 oligonucleotide decamers tested in random amplified polymorphic DNA (RAPD) assays, 107 were shown to discriminate between the two species of Taenia. Twenty-one DNA fragments that were specific for each species of Taenia were chosen for DNA cloning and sequencing. Seven RAPD markers were converted into sequence characterized amplified region (SCAR) markers with two specific for T. saginata and five specific for T. solium as shown by agarose gel electrophoresis. These markers were developed as potential tools to differentiate T. solium from T. saginata in epidemiological studies. © 2007 Elsevier Inc. All rights reserved.
Resumo:
The Coleoptera order is the richest group among Metazoa, but its phylogenetics remains incompletely understood. Among Coleoptera, bioluminescence is found within the Elateroidea, but the evolution of this character remains a mystery. Mitochondrial DNA has been used extensively to reconstruct phylogenetic relationships, however, the evolution of a single gene does not always correspond to the species evolutionary history and the molecular marker choice is a key step in this type of analysis. To create a solid basis to better understand the evolutionary history of Coleoptera and its bioluminescence, we sequenced and comparatively analyzed the mitochondrial genome of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae). © 2007 Elsevier B.V. All rights reserved.
Resumo:
Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.
Resumo:
Molossidae species, Cynomops abrasus (2n = 34, fundamental number, FN = 64), Eumops auripendulus (2n = 42, FN = 62), Molossus rufus (2n = 48, FN = 64), Molossops temminckii (2n = 48, FN = 64), and Nyctinomops laticaudatus (2n = 48, FN = 64), and Phyllostomidae species, Phyllostomus discolor (2n = 32, FN = 60), have karyotypes with different chromosome and fundamental numbers, different localization of constitutive heterochromatin, and different numbers and location of nucleolar organizer regions (NORs). Fluorescence in situ hybridization with a human probe of the telomeric sequence (TTAGGG)n produced fluorescent signals in telomeric regions of the six bat species' chromosomes; in E. auripendulus, pericentromeric signals were also observed in the acrocentric and subtelocentric chromosomes. A relationship between telomeric sequences and NORs, and between telomeric sequences and constitutive heterochromatin was detected in chromosomes bearing NORs in C. abrasus, M. temminckii, N. laticaudatus, and P. discolor. No interstitial signal was observed in the meta- or submetacentric chromosomes of these species. ©FUNPEC-RP.
Resumo:
The purpose of this work is to present a frequency domain model to demonstrate the operation of an electromagnetic arrangement for controlling the injection of zero-sequence currents in the electrical system. Considering the diversity of sequential distribution of harmonic components of a current, the device proposed can be used in the process of mitigation of zero-sequence components. This device, here called electromagnetic suppressor, consists of a blocker and filter both electromagnetic, whose joint operation can provide paths of high and low impedances that can be conveniently adjusted in order to search for a desired performance. This study presents physical considerations, mathematical modeling and computer simulations that clearly demonstrate the viability of this application as a more viable alternative in the conception of filtering systems. The performance analysis is based on the frequency response of harmonic transmittances. The efficacy of this technique in direct actions to maximize the harmonic mitigation process is demonstrated. ©2010 IEEE.
Resumo:
This paper reveals new contributions to the analysis and development of mitigating harmonic distortion devices. Considering the variety of sequential distribution of harmonic current, in the use of passive filters, one can point out the electromagnetic blocking device, which have received particular attention due to its robustness and low cost of installation. In this context, aiming the evaluation of the reliability of the results obtained through mathematical modeling, experimental tests are carried out using a low-power prototype, highlighting particular aspects related to its function as a zero-sequence harmonic blocking. © 2011 IEEE.
Resumo:
The intent of this paper is to present contributions focused on the analysis and development of harmonic attenuator devices. Among these, highlights here the so-called electromagnetic zero-sequence suppressor. This arrangement consists of a filter and a blocker, both electromagnetic, whose combined operation provides paths for low and high impedance, respectively, which can be conveniently adjusted to the desired performance. In this context, here are present results related to experimental studies that show the behavior of the equipment in front of different operating conditions. The tests were performed on a low-power prototype (1kVA/220V) and the analysis results show the main motivator aspects for the use of these devices. © 2012 IEEE.
Resumo:
This quasi-experimental study describes the effects of a yoga sequence following hemodynamic and biochemical parameters in patients with hypertension. Thirty-three volunteers participated in the study (control = 16 and yoga = 17) for four months. Blood pressure measurements, cardiac and respiratory rate were collected monthly, while the biochemical profile was taken at the beginning and end of the program. To analyze the data, Student's t test and repeated measures analyses were performed. The yoga group showed a significant reduction of systolic blood pressure, heart and respiratory rate (p < 0.05). As for the biochemical profile, the yoga group showed correlation coefficients between initial values and final responses greater than the control of fasting glucose, total cholesterol, LDL-cholesterol and triglycerides. The elaborated sequence practice promoted significant cardiovascular and metabolic benefits. The yoga exercises performed in the proposed sequence constitute complementary non-pharmacological control of blood pressure in patients with hypertension. © 2012 Elsevier Ltd.
Resumo:
Purpose. We quantified the main sequence of spontaneous blinks in normal subjects and Graves' disease patients with upper eyelid retraction using a nonlinear and two linear models, and examined the variability of the main sequence estimated with standard linear regression for 10-minute periods of time. Methods. A total of 20 normal subjects and 12 patients had their spontaneous blinking measured with the magnetic search coil technique when watching a video during one hour. The main sequence was estimated with a power-law function, and with standard and trough the origin linear regressions. Repeated measurements ANOVA was used to test the mean sequence stability of 10-minute bins measured with standard linear regression. Results. In 95% of the sample the correlation coefficients of the main sequence ranged from 0.60 to 0.94. Homoscedasticity of the peak velocity was not verified in 20% of the subjects and 25% of the patients. The power-law function provided the best main sequence fitting for subjects and patients. The mean sequence of 10-minute bins measured with standard linear regression did not differ from the one-hour period value. For the entire period of observation and the slope obtained by standard linear regression, the main sequence of the patients was reduced significantly compared to the normal subjects. Conclusions. Standard linear regression is a valid and stable approximation for estimating the main sequence of spontaneous blinking. However, the basic assumptions of the linear regression model should be examined on an individual basis. The maximum velocity of large blinks is slower in Graves' disease patients than in normal subjects. © 2013 The Association for Research in Vision and Ophthalmology, Inc.