956 resultados para Poly(methyl methacrylate) resins
Resumo:
Ozonolysis of methyl oleate monolayers at the air–water interface results in surprisingly rapid loss of material through cleavage of the C[double bond, length as m-dash]C bond and evaporation/dissolution of reaction products. We determine using neutron reflectometry a rate coefficient of (5.7 ± 0.9) × 10−10 cm2 molecule−1 s−1 and an uptake coefficient of [similar]3 × 10−5 for the oxidation of a methyl ester monolayer: the atmospheric lifetime is [similar]10 min. We obtained direct experimental evidence that <2% of organic material remains at the surface on atmospheric timescales. Therefore known long atmospheric residence times of unsaturated fatty acids suggest that these molecules cannot be present at the interface throughout their ageing cycle, i.e. the reported atmospheric longevity is likely to be attributed to presence in the bulk and viscosity-limited reactive loss. Possible reaction products were characterized by ellipsometry and uncertainties in the atmospheric fate of organic surfactants such as oleic acid and its methyl ester are discussed. Our results suggest that a minor change to the structure of the molecule (fatty acid vs. its methyl ester) considerably impacts on reactivity and fate of the organic film.
Resumo:
The (poly)phenols in ileal fluid after ingestion of raspberries were analysed by targeted and non-targeted LC-MSn approaches. Targeted approaches identified major anthocyanin and ellagitannin components at varying recoveries and with considerable inter-individual variation. Non-targeted LC-MSn analysis using an Orbitrap mass spectrometer gave exact mass MS data which was sifted using a software program to select peaks that changed significantly after supplementation. This method confirmed the recovery of the targeted components but also identified novel raspberry-specific metabolites. Some components (including ellagitannin and previously unidentified proanthocyanidin derivatives) may have arisen from raspberry seeds that survived intact in ileal samples. Other components include potential breakdown products of anthocyanins, unidentified components and phenolic metabolites formed in either the gut epithelia or after absorption into the circulatory system and efflux back into the gut lumen. The possible physiological roles of the ileal metabolites in the large bowel are discussed.
Resumo:
The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.
Resumo:
Copolycondensation of N,N′-bis(2-hydroxyethyl)-biphenyl-3,4,3′,4′-tetracarboxylic diimide (5–25 mol %) with bis(2-hydroxyethyl)-2,6-naphthalate affords a series of cocrystalline, poly(ethylene 2,6-naphthalate) (PEN)-based poly(ester imide)s. The glass transition temperature rises with the level of comonomer, from 118 °C for PEN itself to 148 °C for the 25% diimide copolymer. X-ray powder and fiber diffraction studies show that, when 5 mol % or more of diimide is present, the α-PEN crystal structure is replaced by a new crystalline phase arising from isomorphic substitution of biphenyldiimide for PEN residues in the polymer crystal lattice. This new phase is provisionally identified as monoclinic, C2/m, with two chains per unit cell, a = 10.56, b = 6.74, c = 13.25 Å, and β = 143.0°.
Resumo:
PLLA is a thermoplastic biopolymer and can be used in industrial applications for medical and filtration applications. The brittleness of PLLA is attributed to slow crystallization rates and its glass transition temperature (Tg) is high (60 °C); for this reason, its applications are limited. The orientation, morphology, and crystal structure of the electrospun fibers was investigated by SEM, POM, DSC, FTIR, XRD, and SAXS. Combining with additives leads to a large decrease of fiber diameter, viscosity, and changes of fiber morphology and crystal structure compared to pure PLLA. DSC showed that the Tg of PLLA decreased about 15 °C and there was no change in relaxation enthalpy by the addition of plasticizer. FT-IR indicate a strong interaction between PLLA and additives; a new band appears in the PLLA blend at 1,756 cm−1 at room temperature as a crystalline band without any annealing. In addition, WAXD indicated that the intensities of the two peaks at (200/110) and (203) increased for the blend at room temperature without any annealing in comparison with PLLA; this means that PHB crystallizes in the amorphous region of PLLA. The POM experiments agree with the results from DSC, FTIR, and WAXS measurements, confirming that adding PHB results in an increase in the number of nuclei with much smaller spherulites and enhances the crystallization behavior of this material, thereby improving its potential for applications.
Resumo:
A major hurdle in producing a useful probiotic food product is bacterial survival during storage and ingestion. The aim of this study was to test the effect of γ-PGA immobilisation on the survival of probiotic bacteria when stored in acidic fruit juice. Fruit juices provide an alternative means of probiotic delivery, especially to lactose intolerant individuals. In addition, the survival of γ-PGA-immobilised cells in simulated gastric juice was also assessed. Bifidobacteria strains (B. longum, B. breve), immobilised on 2.5 % γ-PGA, survived significantly better (P < 0.05) in orange and pomegranate juice for 39 and 11 days respectively, compared to free cells. However, cells survived significantly better (P < 0.05) when stored in orange juice compared to pomegranate juice. Moreover, both strains, when protected with 2.5 % γ-PGA, survived in simulated gastric juice (pH 2.0) with a marginal reduction (<0.47 log CFU/ml) or no significant reduction in viable cells after four hours, whereas free cells died within two hours. In conclusion, this research indicates that γ-PGA can be used to protect Bifidobacteria cells in fruit juice, and could also help improve the survival of cells as they pass through the harsh conditions of the gastrointestinal tract (GIT). Following our previous report on the use of γ-PGA as a cryoprotectant for probiotic bacteria, this research further suggests that γ-PGA could be used to improve probiotic survival during the various stages of preparation, storage and ingestion of probiotic cells.
Resumo:
ABSTRACT: Polypyridyl ruthenium complexes have been intensively studied and possess photophysical properties which are both interesting and useful. They can act as probes for DNA, with a substantial enhancement in emission when bound, and can induce DNA damage upon photoirradiation and therefore, the synthesis and characterization of DNA binding of new complexes is an area of intense research activity. Whilst knowledge of how the binding of derivatives compares to the parent compound is highly desirable, this information can be difficult to obtain. Here we report the synthesis of three new methylated complexes, [Ru(TAP)2(dppz-10-Me).2Cl, [Ru(TAP)2(dppz-10,12-Me2)].2Cl and [Ru(TAP)2(dppz-11-Me)].2Cl, and examine the consequences for DNA binding through the use of atomic resolution X-ray crystallography. We find that the methyl groups are located in discrete positions with a complete directional preference. This may help to explain the quenching behavior which is found in solution for analogous [Ru(phen)2(dppz)]2+ derivatives.
Resumo:
Copolycondensation of N,N’-bis(4-hydroxybutyl)-biphenyl-3,4,3',4'-tetracarboxylic diimide at 20 and 25 mol% with bis(4-hydroxybutyl)-2,6-naphthalate produces PBN-based copoly(ester-imide)s that not only crystallise but also form a (smectic) mesophase upon cooling from the melt. Incorporation of 25 mol% imide in PBN causes the glass transition temperature (measured by DSC) to rise from 51 to 74 °C, a significant increase relative to PBN. Furthermore, increased storage- (G'), loss- (G'') and elastic (E) moduli are observed for both copoly(ester-imide)s when compared to PBN itself. Structural analysis of the 20 mol% copolymer by X-ray powder and fibre diffraction, interfaced to computational modelling, suggests a crystal structure related to that of α-PBN, in space group P-1, with cell dimensions a = 4.74, b = 6.38, c = 14.45 Å, α = 106.1, β = 122.1, γ = 97.3°, ρ = 1.37 g cm-3.
Resumo:
Novel redox- and glucose-responsive hydrogels have been synthesized by simple mixing of poly(vinyl alcohol) (PVA) and 4-mercaptophenylboronic acid (MPBA) in aqueous solutions (pH > 9) in an oxidative aqueous media. These hydrogels are produced through the formation of disulfide linkages between MPBA molecules in an oxidative environment (oxygen dissolved in solution or hydrogen peroxide added to the reaction mixture) and complexation via dynamic covalent bonds between PVA and MPBA dimer. These hydrogels show degradation in solutions of l-glutathione and d-glucose.
Resumo:
The effects of varying the alkali metal cation in the high-temperature nucleophilic synthesis of a semi-crystalline, aromatic poly(ether ketone) have been systematically investigated, and striking variations in the sequence-distributions and thermal characteristics of the resulting polymers were found. Polycondensation of 4,4'-dihydroxybenzophenone with 1,3-bis(4-fluorobenzoyl)benzene in diphenylsulfone as solvent, in the presence of an alkali metal carbonate M2CO3 (M= Li, Na, K, or Rb) as base, affords a range of different polymers that vary in the distribution pattern of 2-ring and 3-ring monomer units along the chain. Lithium carbonate gives an essentially alternating and highly crystalline polymer, but the degree of sequence-randomisation increases progressively as the alkali metal series is descended, with rubidium carbonate giving a fully random and non-thermally-crystallisable polymer. Randomisation during polycondensation is shown to result from reversible cleavage of the ether linkages in the polymer by fluoride ions, and an isolated sample of alternating-sequence polymer is thus converted to a fully randomised material on heating with rubidium fluoride.
Resumo:
Herein we describe a facile protocol for the reduction of aromatic ketones and aldehydes to the corresponding methylene unit. The procedure involves isolation of a carbomethoxyhydrazone intermediate that is easily decomposed to the reduced product without the requirement for large quantities of pernicious hydrazine.
Resumo:
The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(l-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into β-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers—in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide–polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped “associative polymers”. Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups
Resumo:
Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants.
Resumo:
Objective: The purpose of this in vitro study was to evaluate the antimicrobial activity of acrylic resins containing different percentages of silver and zinc zeolite, and to assess whether the addition of zeolite alters the flexural and impact strength of the resins. Background: The characteristics of acrylic resins support microorganism development that can threaten the health of the dentures user. Material and methods: A microwave-polymerised (Onda-Cryl) and two heat-polymerised (QC20 and Lucitone 550) acrylic resins were used. The materials were handled according to the manufacturers` instructions. Fifty rectangular-shaped specimens (8 x 10 x 4mm) were fabricated from each resin and assigned to 5 groups (n = 10) according to their percentage of Irgaguard B5000 silver-zinc zeolite (0%- control, 2.5%, 5.0%, 7.5% and 10%). Flexural strength and Izod impact strength were evaluated. The antimicrobial activity against two strains of Candida albicans and two strains of Streptococcus mutans was assessed by agar diffusion method. Data were analysed statistically by one-way ANOVA and Tukey`s test at 5% significance level. Results: The addition of 2.5% of Irgaguard B5000 to the materials resulted in antimicrobial activity against all strains. Flexural strength decreased significantly with the addition of 2.5% (QC20 and Lucitone 550) and 5.0% (Onda-Cryl) of Irgaguard B5000. The impact strength decreased significantly with the addition of 2.5% (Lucitone 550) and 5.0% (QC20 and Onda-Cryl) of zeolite. Conclusion: The addition of silver-zinc zeolite to acrylic resins yields antimicrobial activity, but may affect negatively the mechanical properties, depending on the percentage of zeolite.