909 resultados para Poisson Regression
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The anesthesia-related cardiac arrest (CA) rate is a quality indicator to improve patient safety in the perioperative period. A systematic review with meta-analysis of the worldwide literature related to anesthesia-related CA rate has not yet been performed.This study aimed to analyze global data on anesthesia-related and perioperative CA rates according to country's Human Development Index (HDI) and by time. In addition, we compared the anesthesia-related and perioperative CA rates in low- and high-income countries in 2 time periods.A systematic review was performed using electronic databases to identify studies in which patients underwent anesthesia with anesthesia-related and/or perioperative CA rates. Meta-regression and proportional meta-analysis were performed with 95% confidence intervals (CIs) to evaluate global data on anesthesia-related and perioperative CA rates according to country's HDI and by time, and to compare the anesthesia-related and perioperative CA rates by country's HDI status (low HDI vs high HDI) and by time period (pre-1990s vs 1990s-2010s), respectively.Fifty-three studies from 21 countries assessing 11.9 million anesthetic administrations were included. Meta-regression showed that anesthesia-related (slope: -3.5729; 95% CI: -6.6306 to -0.5152; P = 0.024) and perioperative (slope: -2.4071; 95% CI: -4.0482 to -0.7659; P = 0.005) CA rates decreased with increasing HDI, but not with time. Meta-analysis showed per 10,000 anesthetics that anesthesia-related and perioperative CA rates declined in high HDI (2.3 [95% CI: 1.2-3.7] before the 1990s to 0.7 [95% CI: 0.5-1.0] in the 1990s-2010s, P < 0.001; and 8.1 [95% CI: 5.1-11.9] before the 1990s to 6.2 [95% CI: 5.1-7.4] in the 1990s-2010s, P < 0.001, respectively). In low-HDI countries, anesthesia-related CA rates did not alter significantly (9.2 [95% CI: 2.0-21.7] before the 1990s to 4.5 [95% CI: 2.4-7.2] in the 1990s-2010s, P = 0.14), whereas perioperative CA rates increased significantly (16.4 [95% CI: 1.5-47.1] before the 1990s to 19.9 [95% CI: 10.9-31.7] in the 1990s-2010s, P = 0.03).Both anesthesia-related and perioperative CA rates decrease with increasing HDI but not with time. There is a clear and consistent reduction in anesthesia-related and perioperative CA rates in high-HDI countries, but an increase in perioperative CA rates without significant alteration in the anesthesia-related CA rates in low-HDI countries comparing the 2 time periods.
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included). This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.
Resumo:
Lianas can change forest dynamics, slowing down forest regeneration after a perturbation. In these cases, it may be necessary to manage these woody climbers. Our aim was to simulate two management strategies: (1) focusing on abundant liana species and (2) focusing on the largest lianas, and contrast them with the random removal of lianas. We applied mathematical simulations for liana removal in three different vegetation types in southeastern Brazil: a Rainforest, a Seasonal Tropical Forest, and a Woodland Savanna. Using these samples, we performed simulations based on two liana removal procedures and compared them with random removal. We also used regression analysis with quasi-Poisson distribution to test whether larger lianas were aggressive, i.e., if they climbed into many trees. The procedure of cutting larger lianas was as effective as cutting them randomly and proved not to be a good method for liana management. Moreover, most of the lianas climbed into one or two trees, i.e., were not aggressive. Cutting the most abundant lianas proved to be a more effective method than cutting lianas randomly. This method could maintain liana richness and presumably should accelerate forest regeneration.
Resumo:
Environmental data are spatial, temporal, and often come with many zeros. In this paper, we included space–time random effects in zero-inflated Poisson (ZIP) and ‘hurdle’ models to investigate haulout patterns of harbor seals on glacial ice. The data consisted of counts, for 18 dates on a lattice grid of samples, of harbor seals hauled out on glacial ice in Disenchantment Bay, near Yakutat, Alaska. A hurdle model is similar to a ZIP model except it does not mix zeros from the binary and count processes. Both models can be used for zero-inflated data, and we compared space–time ZIP and hurdle models in a Bayesian hierarchical model. Space–time ZIP and hurdle models were constructed by using spatial conditional autoregressive (CAR) models and temporal first-order autoregressive (AR(1)) models as random effects in ZIP and hurdle regression models. We created maps of smoothed predictions for harbor seal counts based on ice density, other covariates, and spatio-temporal random effects. For both models predictions around the edges appeared to be positively biased. The linex loss function is an asymmetric loss function that penalizes overprediction more than underprediction, and we used it to correct for prediction bias to get the best map for space–time ZIP and hurdle models.
Resumo:
Where the creation, understanding, and assessment of software testing and regression testing techniques are concerned, controlled experimentation is an indispensable research methodology. Obtaining the infrastructure necessary to support such experimentation, however, is difficult and expensive. As a result, progress in experimentation with testing techniques has been slow, and empirical data on the costs and effectiveness of techniques remains relatively scarce. To help address this problem, we have been designing and constructing infrastructure to support controlled experimentation with testing and regression testing techniques. This paper reports on the challenges faced by researchers experimenting with testing techniques, including those that inform the design of our infrastructure. The paper then describes the infrastructure that we are creating in response to these challenges, and that we are now making available to other researchers, and discusses the impact that this infrastructure has and can be expected to have.
Resumo:
Regression coefficients specify the partial effect of a regressor on the dependent variable. Sometimes the bivariate or limited multivariate relationship of that regressor variable with the dependent variable is known from population-level data. We show here that such population- level data can be used to reduce variance and bias about estimates of those regression coefficients from sample survey data. The method of constrained MLE is used to achieve these improvements. Its statistical properties are first described. The method constrains the weighted sum of all the covariate-specific associations (partial effects) of the regressors on the dependent variable to equal the overall association of one or more regressors, where the latter is known exactly from the population data. We refer to those regressors whose bivariate or limited multivariate relationships with the dependent variable are constrained by population data as being ‘‘directly constrained.’’ Our study investigates the improvements in the estimation of directly constrained variables as well as the improvements in the estimation of other regressor variables that may be correlated with the directly constrained variables, and thus ‘‘indirectly constrained’’ by the population data. The example application is to the marital fertility of black versus white women. The difference between white and black women’s rates of marital fertility, available from population-level data, gives the overall association of race with fertility. We show that the constrained MLE technique both provides a far more powerful statistical test of the partial effect of being black and purges the test of a bias that would otherwise distort the estimated magnitude of this effect. We find only trivial reductions, however, in the standard errors of the parameters for indirectly constrained regressors.
Resumo:
Objective: Asthma is the most common chronic disease in childhood and has been designated a public health problem due to the increase in its prevalence in recent decades, the amount of health service expenditure it absorbs and an absence of consensus about its etiology. The relationships among psychosocial factors and the occurrence, symptomatology, and severity of asthma have recently been considered. There is still controversy about the association between asthma and a child`s mental health, since the pathways through which this relationship is established are complex and not well researched. This study aims to investigate whether behavior problems are associated with the prevalence of asthma symptoms in a large urban center in Latin America. Methods: It is a cross-section study of 869 children between 6 and 12 years old, residents of Salvador, Brazil. The International Study of Allergy and Asthma in Childhood (ISAAC) instrument was used to evaluate prevalence of asthma symptoms. The Child Behavior Checklist (CBCL) was employed to evaluate behavioral problems. Results: 19.26% (n = 212) of the children presented symptoms of asthma. 35% were classified as having clinical behavioral problems. Poisson`s robust regression model demonstrated a statistically significant association between the presence of behavioral problems and asthma symptoms occurrence (PR: 1.43; 95% Cl: 1.10-1.85). Conclusion: These results suggest an association between behavioral problems and pediatric asthma, and support the inclusion of mental health care in the provision of services for asthma morbidity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The Conway-Maxwell Poisson (COMP) distribution as an extension of the Poisson distribution is a popular model for analyzing counting data. For the first time, we introduce a new three parameter distribution, so-called the exponential-Conway-Maxwell Poisson (ECOMP) distribution, that contains as sub-models the exponential-geometric and exponential-Poisson distributions proposed by Adamidis and Loukas (Stat Probab Lett 39:35-42, 1998) and KuAY (Comput Stat Data Anal 51:4497-4509, 2007), respectively. The new density function can be expressed as a mixture of exponential density functions. Expansions for moments, moment generating function and some statistical measures are provided. The density function of the order statistics can also be expressed as a mixture of exponential densities. We derive two formulae for the moments of order statistics. The elements of the observed information matrix are provided. Two applications illustrate the usefulness of the new distribution to analyze positive data.
Resumo:
The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
Resumo:
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.