956 resultados para Poisonous snakes - Venom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os autores relatam um quadro manifestado por sintomas neurológicos e musculares em uma mulher de 45 anos, que surgiu após o consumo da carne de polvo comum (Octopus sp.). A paciente apresentou intenso mal estar, parestesias em extremidades e área perioral, fraqueza muscular intensa e hipotensão arterial, seguidos de prurido importante e uma erupção eritêmato-descamativa disseminada tardia. Não foram observadas manifestações gastrintestinais ou febre, o que reduziu a probabilidade de uma intoxicação alimentar por conservação inadequada do molusco. A presença de sintomas neuro-musculares é sugestiva de ação de neurotoxinas, comprovadamente existentes em muitos gêneros de polvos e que podem ter sido ingeridas através do consumo das glândulas salivares ou acúmulo das toxinas na carne, por algum mecanismo ainda desconhecido. As toxinas dos polvos do gênero Octopus são pouco estudadas e julgamos esta comunicação importante por alertar para a possibilidade do envenenamento nos seres humanos que consomem carne de polvos e ainda sua diferenciação das intoxicações alimentares que ocorrem por conservação inadequada do animal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sarafotoxins are peptides isolated from the Atractaspisw snake venom. with strong constrictor effect on cardiac and smooth muscle. They are structurally and functionally related to endothelins. The sarafotoxins precursor cDNA predicts an unusual structure 'rosary-type', with 12 successive similar stretches of sarafotoxin (SRTX) and spacer, in the present work, the recombinant precursor of SRTXs was sub-cloned and expressed in the yeast Pichia pastoris. and secreted to the culture medium, Characterization by SDS-PAGE, immunoblot, mass spectrometry and biological activity, suggests that intact precursor was expressed but processing into mature toxins also occurred. Furthermore, our results indicate that the correct proportion of sarafotoxin types as contained in the precursor, is obtained in the yeast culture medium. Contractile effects of the expressed toxins, on rat and Bothrops jararaca isolated aorta, were equivalent to 5 X 10(-10) M and 5 x 10(-11) M of sarafotoxin b, respectively. The enzymes responsible for the complete maturation of sarafotoxins precursor are still unknown. Our results strongly suggest that the yeast Pichia pastoris is able to perform such a maturation process. Thus, the yeast Pichia pastoris may offer an alternative to snake venom gland to tentatively identify the molecular process responsible for SRTXs release. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal venoms have been valuable sources for development of new drugs and important tools to understand cellular functioning in health and disease. The venom of Polybia paulista, a neotropical social wasp belonging to the subfamily Polistinae, has been sampled by headspace solid phase microextraction and analyzed by gas chromatography-mass spectrometry. Recent study has shown that mastoparan, a major basic peptide isolated from the venom, reproduces the myotoxic effect of the whole venom. In this study, Polybia-MPII mastoparan was synthesized and studies using transmission electron microscopy were carried out in mice tibial anterior muscle to identify the subcellular targets of its myotoxic action. The effects were followed at 3 and 24 h, 3, 7, and 21 days after mastoparan (0.25 mu g/mu L) intramuscular injection. The peptide caused disruption of the sarcolemma and collapse of myofibril arrangement in myofibers. As a consequence, fibers presented heteromorphic amorphous masses of agglutinated myofilaments very often intermingled with denuded sarcoplasmic areas sometimes only surrounded by a persistent basal lamina. To a lesser extent, a number of fibers apparently did not present sarcolemma rupture but instead appeared with multiple small vacuoles. The results showed that sarcolemma, sarcoplasmic reticulum (SR), and mitochondria were the main targets for mastoparan. In addition, a number of fibers showed apoptotic-like nuclei suggesting that the peptide causes death both by necrosis and apoptosis. This study presents a hitherto unexplored view of the effects of mastoparan in skeletal muscle and contributes to discuss how the known pharmacology of the peptide is reflected in the sarcolemma, SR, mitochondria, and nucleus of muscle fibers, apparently its subcellular targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammals has been pointed out to be the main nest predators in islands, but recent studies has shown that tree snakes are also important nest predator in tropical forests. Here we present information on the density tegu lizards Tupinambis merianae and its role as nest predator at Anchieta Island, Ubatuba, in southeastern Brazil. The mean density of tegu lizards wets estimated to be 83 individuals/km2, which is 1.83 times lower than other well-known population (Fernando de Noronha Archipelago). In the dense rainforest, the density was estimated in 20 individuas/ km2, and in the open rainforest, 109 ind/km2. The high density of this lizard may have serious implications for nest predation. We found that 36% of artificial plasticine eggs were "preyed upon" by tegu lizards. Therefore, it is paramount to manage the tegu population on Anchieta Island to assure the survival of ground nesting birds in islands and possibly in forest fragments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orb-web-spiders present a series of different strategies for prey capture, involving the use of different types of silk for web building, the use of adhesive traps in the webs, the secretion of toxic compounds to the spider's preys in the adhesive coating of the capture web and the biosynthesis of a wide range of structurally related acylpolyamine toxins in their venoms. The polyamine toxins usually block neuromuscular junctions and/or the central nervous system (CNS) of Arthropods, targeting specially the ionotropic glutamate receptors; this way these toxins are used are as chemical weapons to kill / paralyze the spider's prey. Polyamine toxins contain many azamethylene groups involved with the chelation of metal ions, which in turn can interact with the glutamate receptors, affecting the toxicity of these toxins. It was demonstrated that the chelation of Ni+2, Fe+2, Pb+2, Ca+2 and Mg+2 ions by the desalted crude venom of Nephilengys cruentata and by the synthetic toxin JSTX-3, did not cause any significant change in the toxicity of the acylpolyamine toxins to the model-prey insect (honeybees). However, it was also reported that the chelation of Zn+2 ions by the acylpolyamines potentiated the lethal / paralytic action of these toxins to the honeybees, while the chelation of Cu+2 ions caused the inverse effect. Atomic absorption spectrometry and Plasma-ICP analysis both of N.cruentata venom and honeybee's hemolymph revealed that the spider's venom concentrates Zn+2 ions, while the honeybee's hemolymph concentrates Cu+2 ions. These results are suggesting that the natural accumulation of Zn+2 ions in N. cruentata venom favors the prey catching and/or its maintenance in the web, while the natural accumulation of Cu+2 ions in prey's hemolymph minimizes the efficiency of the acylpolyamine toxins as killing/paralyzing tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We quantified the oxygen uptake rates ((V) over dot O-2) and time spent, during the constriction, inspection, and ingestion of prey of different relative sizes, by the prey-constricting boid snake Boa constrictor amarali. Time spent in prey constriction varied from 7.6 to 16.3 min, and (V) over dot O-2 during prey constriction increased 6.8-fold above resting values. This was the most energy expensive predation phase but neither time spent nor metabolic rate during this phase were correlated with prey size. Similarly, prey size did not affect the (V) over dot O-2 or duration of prey inspection. Prey ingestion time, on the other hand, increased linearly with prey size although (V) over dot O-2 during this phase, which increased 4.9-fold above resting levels, was not affected by prey size. The increase in mechanical difficulty of ingesting larger prey, therefore, was associated with longer ingestion times rather than proportional increases in the level of metabolic effort. The data indicate that prey constriction and ingestion are largely sustained by glycolysis and the intervening phase of prey inspection may allow recovery between these two predatory phases with high metabolic demands. The total amount of energy spent by B. c. amarali to constrict, inspect, and ingest prey of sizes varying from 5 to 40% of snake body mass varied inversely from 0.21 to 0.11% of the energy assimilated from the prey, respectively. Thus, prey size was not limited by the energetic cost of predation. on the contrary, snakes feeding on larger prey were rewarded with larger energetic returns, in accordance with explanations of the evolution of snake feeding specializations. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reptiles, particularly snakes, exhibit large and quantitatively similar increments in metabolic rate during muscular exercise and following a meal, when they are apparently inactive. The cardiovascular responses are similar during these two states, but the underlying autonomic control of the heart remains unknown. We describe both adrenergic and cholinergic tonus on the heart during rest, during enforced activity and during digestion (24-36h after ingestion of 30% of their body mass) in the snake Boa constrictor. The snakes were equipped with an arterial catheter for measurements of blood pressure and heart rate, and autonomic tonus was determined following infusion of the beta -adrenergic antagonist propranolol (3mg kg(-1)) and the muscarinic cholinoceptor antagonist atropine (3 mg kg-1).The mean heart rate of fasting animals at rest was 26.4 +/- 1.4 min(-1), and this increased to 36.1 +/- 1.4 min(-1) (means +/- S.E.M.; N=8) following double autonomic block (atropine and propranolol). The calculated cholinergic and adrenergic tones were 60.1 +/- 0.3% and 19.8 +/- 2.2%, respectively. Heart rate increased to 61.4 +/- 1.5 min(-1) during enforced activity, and this response was significantly reduced by propranolol (maximum values of 35.8 +/-1.6 min(-1)), but unaffected by atropine. The cholinergic and adrenergic tones were 2.6 +/- 2.2 and 41.3 +/- 1.9 % during activity, respectively. Double autonomic block virtually abolished tachycardia associated with enforced activity (heart rate increased significantly from 36.1 +/- 1.4 to 37.6 +/- 1.3 min(-1)), indicating that non-adrenergic, non-cholinergic effectors are not involved in regulating heart rate during activity. Blood pressure also increased during activity.Digestion was accompanied by an increase in heart rate from 25.6 +/- 1.3 to 47.7 +/- 2.2 min(-1) (N=8). In these animals, heart rate decreased to 44.2 +/- 2.7 min-1 following propranolol infusion and increased to 53.9 +/- 1.8 min-1 after infusion of atropine, resulting in small cholinergic and adrenergic tones (6.0 +/- 3.5 and 11.1 +/- 1.1 %, respectively). The heart rate of digesting snakes was 47.0 +/- 1.0 min(-1) after double autonomic blockade, which is significantly higher than the value of 36.1 1.4 min-1 in double-blocked fasting animals at rest. Therefore, it appears that some other factor exerts a positive chronotropic effect during digestion, and we propose that this factor may be a circulating regulatory peptide, possibly liberated from the gastrointestinal system in response to the presence of food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not P-CO2, during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol 1(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial P-CO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial P-CO2. The increased arterial P-CO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial P-CO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than P-CO2 normally affects chemoreceptor activity and ventilatory drive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the effects of environmental hypercarbia on ventilation in snakes, particularly the anomalous hyperpnea that is seen when CO(2) is removed from inspired gas mixtures (post-hypercapnic hyperpnea), gas mixtures of varying concentrations of CO(2) were administered to South American rattlesnakes, Crotalus durissus, breathing through an intact respiratory system or via a tracheal cannula by-passing the upper airways. Exposure to environmental hypercarbia at increasing levels, up to 7% CO(2), produced a progressive decrease in breathing frequency and increase in tidal volume. The net result was that total ventilation increased modestly, up to 5% CO(2) and then declined slightly on 7% CO(2). on return to breathing air there was an immediate but transient increase in breathing frequency and a further increase in tidal volume that produced a marked overshoot in ventilation. The magnitude of this post-hypercapnic hyperpnea was proportional to the level of previously inspired CO(2). Administration of CO(2) to the lungs alone produced effects that were identical to administration to both lungs and upper airways and this effect was removed by vagotomy. Administration of CO(2) to the upper airways alone was without effect. Systemic injection of boluses of CO(2)-rich blood produced an immediate increase in both breathing frequency and tidal volume. These data indicate that the post-hypercapnic hyperpnea resulted from the removal of inhibitory inputs from pulmonary receptors and suggest that while the ventilatory response to environmental hypercarbia in this species is a result of conflicting inputs from different receptor groups, this does not include input from upper airway receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effect of meal size on specific dynamic action (SDA) in the South American rattlesnake Crotalus durissus, by measuring oxygen consumption rates (VO2) prior to and after the ingestion of meals ranging from 10-50% of snake's body mass. Regardless of meal size, variation in VO2 with time during digestion demonstrated the same general pattern. Oxygen consumption rates peaked between 15 and 33 h post-feeding, at values 3.7-7.3 times those prior to feeding. Snakes, while digesting meals of 30% and 50% of their body mass, experienced VO2 that exceeded rates measured during forced activity. Following peaks in VO2, rates returned to prefeeding values within 62-170 h post-feeding. Post-prandial peak in VO2 and the duration of the metabolic response to feeding increased with meal size. Digestion is an energetically demanding activity for C. durissus, with an estimated cost equaling 12-18% of the ingested assimilated energy.