921 resultados para Peptide Fragments -- chemistry -- immunology -- metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cohort of 59 persons with industrial handling of low levels of acrylonitrile is being studied as part of a medical surveillance programme. Previously, an extended haemoglobin adduct monitoring (N-(cyanoethyl)valine and N-(hydroxyethyl)-valine) was performed regarding the glutathione transferases hGSTM1 and hGSTT1 polymorphisms but no influence of hGSTM1 or hGSTT1 polymorphisms on specific adduct levels was found. A compilation of case reports of human accidental poisonings had pointed to significant individual differences in human acrylonitrile metabolism and toxicity. Therefore, a re-evaluation of the industrial cohort included known polymorphisms of the glutathione transferases hGSTM3 and hGSTP1 as well as of the cytochrome P450 CYP2E1. A detailed statistical analysis revealed that exposed carriers of the allelic variants of hGSTP1, hGSTP1*B/hGSTP1*C, characterized by a single nucleotide polymorphism at nucleotide 313 which results in a change from Ile to Val at codon 104, had higher levels of the acrylonitrile-specific haemoglobin adduct N-(cyanoethyl)valine compared to the carriers of the codon 113 alleles hGSTP1*A and hGSTP1*D. The single nucleotide polymorphism at codon 113 of hGSTP1 (hGSTP1*A/hGSTP1*B versus hGSTP1*C/hGSTP1*D) did not show an effect, and also no influence was seen on specific haemoglobin adduct levels of the polymorphisms of hGSTM3 or CYP2E1. The data, therefore, point to a possible influence of a human enzyme polymorphism of the GSTP1 gene at codon 104 on the detoxication of acrylonitrile which calls for experimental toxicological investigation. The study also confirmed the impact of GSTT1 polymorphism on background N-(hydroxyethyl)-valine adduct levels in haemoglobin which are caused by endogenous ethylene oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high acute toxicity of acrylonitrile may be a result of its intrinsic biological reactivity or of its metabolite cyanide. Intravenous N-acetylcysteine has been recommended for treatment of accidental intoxications in acrylonitrile workers, but such recommendations vary internationally. Acrylonitrile is metabolized in humans and experimental animals via two competing pathways; the glutathione-dependent pathway is considered to represent an avenue of detoxication whilst the oxidative pathway leads to a genotoxic epoxide, cyanoethylene oxide, and to elimination of cyanide. Cases of acute acrylonitrile overexposure or intoxication have occurred within persons having industrial contact with acrylonitrile; the route of exposure was by inhalation and/or by skin contact. The combined observations lead to the conclusion of a much higher impact of the oxidative metabolism of acrylonitrile in humans than in rodents. This is confirmed by differences in the clinical picture of acute life-threatening intoxications in both species, as well as by differential efficacies of antidotes. A combination of N-acetylcysteine with sodium thiosulfate seems an appropriate measure for antidote therapy of acute acrylonitrile intoxications. Clinical observations also highlight the practical importance of human individual susceptibility differences. Furthermore, differential adduct monitoring, assessing protein adducts with different rates of decay, enables the development of more elaborated biological monitoring strategies for the surveillance of workers with potential acrylonitrile contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Case reports of human accidental poisonings point to significant individual differences in human acrylonitrile metabolism and toxicity. A cohort of 59 persons with industrial handling of low levels of acrylonitrile has repetitively been studied from 1994 through 1999 as part of a medical surveillance programme. The analyses included adduct determinations of N-terminal N-(cyanoethyl)valine in haemoglobin and genotypings of the following cytochrome P-450 2E1 (CYP2E1) polymorphisms: G-1259C and C-1019T (two subjects heterozygous), A-316G (three subjects heterozygous), T-297A (15 subjects heterozygous), G-35T (eight subjects heterozygous), G4804A (two subjects heterozygous), T7668A (six subjects heterozygous). N-(Cyanoethyl)valine adduct levels were, if any, only slightly influenced by smoking and mainly determined by the external acrylonitrile exposures. The individual means and medians of N-(cyanoethyl)valine levels over the entire observation period were compared with the CYP2E1 variants (Wilcoxon rank sum test). No influences of the investigated CYP2E1 polymorphisms on the N-(cyanoethyl)valine levels appeared at the 5% level. However, there was a trend, at a level of P≃0.1, pointing to higher acrylonitrile-specific adduct levels in persons with the A-316G mutation. Higher adduct levels would be compatible with a slower CYP2E1-mediated metabolism of acrylonitrile and with lower extents of toxification to cyanide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The effects of free fatty acids (FFA), leptin, tumour necrosis factor (TNF) alpha and body fat distribution on in vivo oxidation of a glucose load were studied in two South African ethnic groups. DESIGN AND MEASUREMENTS Anthropometric and various metabolic indices were measured at fasting and during a 7h oral glucose tolerance test (OGTT). Body composition was measured using bioelectrical impedance analysis and subcutaneous and visceral fat mass was assessed using a five- and two-level CT-scan respectively. Glucose oxidation was evaluated by measuring the ratio of (13)CO(2) to (12)CO(2) in breath following ingestion of 1-(13)C-labelled glucose. SUBJECTS Ten lean black women (LBW), ten obese black women (OBW), nine lean white women (LWW) and nine obese white women (OWW) were investigated after an overnight fast. RESULTS Visceral fat levels were significantly higher (P < 0.01) in obese white than black women, despite similar body mass indexes (BMIs). There were no ethnic differences in glucose oxidation however; in the lean subjects of both ethnic groups the area under the curve (AUC) was higher than in obese subjects (P < 0.05 for both) and was found to correlate negatively with weight (r = -0.69, P < 0.01) after correcting for age. Basal TNF alpha concentrations were similar in all groups. Percentage suppression of FFAs at 30 min of the OCTT was 24 +/- 12% in OWW and - 38 +/- 23% (P < 0.05) in OBW, ie the 30 min FFA level was higher than the fasting level in the latter group. AUC for FFAs during the late postprandial period (120 - 420 min) was significantly higher in OWW than OBW (P < 0.01) and LWW (P < 0.01) and correlated positively with visceral fat mass independent of age (r = 0.78, P < 0.05) in the OWW only. Leptin levels were higher (P < 0.01) both at fasting and during the course of the OCTT in obese women from both ethnic groups compared to the lean women. CONCLUSIONS Glucose oxidation is reduced in obese subjects of both ethnic groups; inter- and intra-ethnic differences were observed in visceral fat mass and FFA production and it is possible that such differences may play a role in the differing prevalences of obesity-related disorders that have been reported in these two populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurements of plasma natriuretic peptides (NT-proBNP, proBNP and BNP) are used to diagnose heart failure but these are expensive to produce. We describe a rapid, cheap and facile production of proteins for immunoassays of heart failure. DNA encoding N-terminally His-tagged NT-proBNP and proBNP were cloned into the pJexpress404 vector. ProBNP and NT-proBNP peptides were expressed in Escherichia coli, purified and refolded in vitro. The analytical performance of these peptides were comparable with commercial analytes (NT-proBNP EC50 for the recombinant is 2.6 ng/ml and for the commercial material is 5.3 ng/ml) and the EC50 for recombinant and commercial proBNP, are 3.6 and 5.7 ng/ml respectively). Total yield of purified refolded NT-proBNP peptide was 1.75 mg/l and proBNP was 0.088 mg/l. This approach may also be useful in expressing other protein analytes for immunoassay applications. To develop a cost effective protein expression method in E. coli to obtain high yields of NT-proBNP (1.75 mg/l) and proBNP (0.088 mg/l) peptides for immunoassay use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Ag-TiO2 and Au-TiO2 hybrid electrodes were designed by covalent attachment of TiO2 nanoparticles to Ag or Au electrodes via an organic linker. The optical and electronic properties of these systems were investigated using the cytochrome b5 (Cyt b5) domain of sulfite oxidase, exclusively attached to the TiO2 surface, as a Raman marker and model redox enzyme. Very strong SERR signals of Cyt b 5 were obtained for Ag-supported systems due to plasmonic field enhancement of Ag. Time-resolved surface-enhanced resonance Raman spectroscopic measurements yielded a remarkably fast electron transfer kinetic (k = 60 s -1) of Cyt b5 to Ag. A much lower Raman intensity was observed for Au-supported systems with undefined and slow redox behavior. We explain this phenomenon on the basis of the different potential of zero charge of the two metals that largely influence the electronic properties of the TiO2 island film. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amoebic gill disease (AGD) is a parasite-mediated proliferative gill disease capable of affecting a range of teleost hosts. While a moderate heritability for AGD resistance in Atlantic salmon has been reported previously, the mechanisms by which individuals resist the proliferative effects remain poorly understood. To gain more knowledge of this commercially important trait, we compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated putatively susceptible to AGD. Utilising a 17k Atlantic salmon cDNA microarray we identified 196 transcripts that were differentially expressed between the two groups. Expression of 11 transcripts were further examined with real-time quantitative RT-PCR (qPCR) in the AGD-resistant and AGD-susceptible animals, as well as non-infected naïve fish. Gene expression determined by qPCR was in strong agreement with the microarray analysis. A large number of differentially expressed genes were involved in immune and cell cycle responses. Resistant individuals displayed significantly higher expression of genes involved in adaptive immunity and negative regulation of the cell cycle. In contrast, AGD-susceptible individuals showed higher expression of acute phase proteins and positive regulators of the cell cycle. Combined with the gill histopathology, our results suggest AGD resistance is acquired rather than innately present, and that this resistance is for the most part associated with the dysregulation of immune and cell cycle pathways. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of tibia. Selection of the correct nail insertion point is important for axial alignment of bone fragments and to avoid iatrogenic fractures. However, the standard entry point (SEP) may not always optimise the bone-nail fit due to geometric variations of bones. This study aimed to investigate the optimal entry for a given bone-nail pair using the fit quantification software tool previously developed by the authors. The misfit was quantified for 20 bones with two nail designs (ETN and ETN-Proximal Bend) related to the SEP and 5 entry points which were 5 mm and 10 mm away from the SEP. The SEP was the optimal entry point for 50% of the bones used. For the remaining bones, the optimal entry point was located 5 mm away from the SEP, which improved the overall fit by 40% on average. However, entry points 10 mm away from the SEP doubled the misfit. The optimised bone-nail fit can be achieved through the SEP and within the range of a 5 mm radius, except posteriorly. The study results suggest that the optimal entry point should be selected by considering the fit during insertion and not only at the final position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h1. High levels of gene expression and moderate cytotoxicity in COS-7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z-average hydrodynamic diameters of 1.50-2.10 lm and zeta potentials of 17.8-23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA-mediated microparticles can be employed as potential gene delivery systems to antigen-presenting cells in the prevention of malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptides constructed from α-helical subunits of the Lac repressor protein (LacI) were designed then tailored to achieve particular binding kinetics and dissociation constants for plasmid DNA purification and detection. Surface plasmon resonance was employed for quantification and characterization of the binding of double stranded Escherichia coli plasmid DNA (pUC19) via the lac operon (lacO) to "biomimics" of the DNA binding domain of LacI. Equilibrium dissociation constants (K D), association (k a), and dissociation rates (k d) for the interaction between a suite of peptide sequences and pUC19 were determined. K D values measured for the binding of pUC19 to the 47mer, 27mer, 16mer, and 14mer peptides were 8.8 ± 1.3 × 10 -10 M, 7.2 ± 0.6 × 10 -10 M, 4.5 ± 0.5 × 10 -8 M, and 6.2 ± 0.9 × 10 -6 M, respectively. These findings show that affinity peptides, composed of subunits from a naturally occurring operon-repressor interaction, can be designed to achieve binding characteristics suitable for affinity chromatography and biosensor devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major drawback to the immunological potency of conventional vaccines, resulting in reduced level of immune responses, tissue injury, shock and high cytotoxicity, thus making their applications contraindicated in immunodeficiency diseases, is the presence of high contaminant concentrations in vaccine titers. Vaccine contamination arises from the simultaneous occurrence of competitive pathways resulting in the formation of other bio-products during cellular metabolism aside the pathways necessary for the production of vaccine molecules. One of such vaccine contaminating molecules is endotoxins which are mainly lipopolysaccharides (LPS) complexes found in the membrane of bacterial cell wall. The structural dynamics of these molecules make their removal from vaccine titers problematic, thus making vaccine endotoxin removal a major research endeavour. This presentation will discuss a novel technique for reducing the endotoxin level of vaccines. The technique commences with the disentanglement of endotoxin-vaccine molecular bonding and then capturing the vaccine molecules on an affinity monolith to separate the vaccine molecules from the endotoxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL-10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).