909 resultados para Peak torque


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a numerical study on the response of axially loaded slender square concrete filled steel tube (CFST) columns under low velocity lateral impact loading. A finite element analysis (FEA) model was developed using the explicit dynamic nonlinear finite element code LS -DYNA in which the strain rate effects of both steel and concrete, contact between steel tube and concrete and confinement effect provided by the steel tube for the concrete were considered. The model also benefited from a relatively recent feature of LS-DYNA for applying a pre-loading in the explicit solver. The developed numerical model was verified for its accuracy and adequacy by comparing the results with experimental results available in the literature. The verified model was then employed to conduct a parametric study to investigate the influence of axial load level, impact location, support conditions, and slenderness ratio on the response of the CFST columns. A good agreement between the numerical and experimental results was achieved. The model could reasonably predict the impact load-deflection history and deformed shape of the column at the end of the impact event. The results of the parametric study showed that whilst impact location, axial load level and slenderness ratio can have a significant effect on the peak impact force, residual lateral deflection and maximum lateral deflection, the influence of support fixity is minimal. With an increase of axial load to up to a certain level, the peak force increases; however, a further increase in the axial load causes a decrease in the peak force. Both residual lateral deflection and maximum lateral deflection increase as axial load level increases. Shifting the impact location towards the supports increases the peak force and reduces both residual and maximum lateral deflections. A rise in slenderness ratio decreases the peak force and increases the residual and maximum lateral deflections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many industry peak and professional bodies advocate students undertake professional work placements as a key work integrated learning (WIL) experience in accredited university degree courses. However, mismatched expectations and gaps in the way industry partners (IPs) are supported during these work placements can place these high-stake alliances at risk. A review of models and strategies supporting industry partners indicates many are contingent on the continued efforts of well-networked individuals in both universities and IP organisations to make these connections work. It is argued that whilst these individuals are highly valued they often end up representing a whole course or industry perspective, not just their area of expertise. Sustainable partnership principles and practices with shared responsibility across stakeholder groups are needed instead. This paper provides an overview of work placement approaches in the disciplines of business, engineering and urban development at an Australian, metropolitan university. Employing action research and participatory focus group methodologies, it gathers and articulates recommendations from associated IPs on practical suggestions and strategies to improve relationships and the resultant quality of placements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates travel behaviour and wait-time activities as a component of passenger satisfaction with public transport in Brisbane, Australia. Australian transport planners recognise a variety of benefits to encouraging a mode shift away from automobile travel in favour of active and public transport use. Efforts to increase public transport ridership have included introducing state of the art passenger information systems, improving physical station access, and integrating system pricing, routes and scheduling for train, bus and ferry. Previous research regarding satisfaction with public transport emphasizes technical dimensions of service quality, including the timing and reliability of service. Those factors might be especially significant for frequent (commuting) travellers who look to balance the cost and efficiency of their travel options. In contrast, infrequent (leisure) passengers may be more concerned with way finding and the sensory experience of the journey. Perhaps due to the small relative proportion of trips made by river ferry compared to bus and rail, this mode of public transport has not received as much attention in travel-behaviour research. This case study of Brisbane’s river ferry system examines ferry passengers at selected terminals during peak and off-peak travel times to find out how travel behaviours and activities correlate to satisfaction with ferry travel. Data include 416 questionnaires completed by passengers intercepted during wait times at seven CityCat terminals in Brisbane. Descriptive statistical analysis revealed associations between specific wait time activities and satisfaction levels that could inform planners seeking to increase ridership and quality of life through ferry-oriented development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background No study relating the changes obtained in the architecture of erector spinae (ES) muscle were registered with ultrasound and different intensities of muscle contraction recorded by surface EMG (electromyography) on the ES muscle was found. The aim of this study was analyse the relationship in the response of the ES muscle during isometric moderate and light lumbar isometric extension considering architecture and functional muscle variables. Methods Cross-sectional study. 46 subjects (52% men) with a group mean age of 30.4 (±7.78). The participants developed isometric lumbar extension while performing moderate and low isometric trunk and hip extension in a sitting position with hips flexed 90 degrees and the lumbar spine in neutral position. During these measurements, electromyography recordings and ultrasound images were taken bilaterally. Bilaterally pennation angle, muscle thickness, torque and muscle activation were measured. This study was developed at the human movement analysis laboratory of the Health Science Faculty of the University of Malaga (Spain). Results Strong and moderate correlations were found at moderate and low intensities contraction between the variable of the same intensity, with correlation values ranging from 0.726 (Torque Moderate – EMG Left Moderate) to 0.923 (Angle Left Light – Angle Right Light) (p < 0.001). This correlation is observed between the variables that describe the same intensity of contraction, showing a poor correlation between variables of different intensities. Conclusion There is a strong relationship between architecture and function variables of ES muscle when describe an isometric lumbar extension at light or moderate intensity. Keywords: Ultrasonography; Surface electromyography; Thickness; Pennation angle; Erector spinae

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent magnet (PM) motors utilising ironless stator structures have been incorporated into a wide variety of applications where high efficiency and stringent torque control are required. With recent developments in magnetic materials, improved design strategies, and power outputs of up to 40kW, PM motors have become an attractive candidate for traction drives in electric and hybrid electric vehicles. However, due to their large air gaps and ironless stators these motors can have inductances as low as 2μH, imposing increased requirements on the converter to minimise current ripple. Multilevel converters with n cells can effectively increase the motor inductance by a factor of n2 and are an excellent approach to minimise the motor ripple current. Furthermore by indirectly coupling the outputs of each cell, improvements in converter input and cell ripple current can also be realised. This paper examines the issues in designing a high current indirectly coupled multilevel motor controller for an ironless BLDC traction drive and highlights the limitations of the common ladder core structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents two efficiency models for the regenerative dynamometer to be built at the University of Queensland. The models incorporate an accurate accounting of the losses associated with the regenerative dynamometer and the battery modelling technique used. In addition to the models the cycle and instantaneous efficiencies were defined for a regenerative system that requires a desired torque output. The simulation of the models allowed the instantaneous and cycle efficiencies to be examined. The results show the intended dynamometer machine has significant efficiency draw backs but incorporating field winding control, the efficiency can be improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the results strongly suggest that the inclusion of ultracapacitors in the electric vehicle does not make sense from a lifecycle cost perspective. Furthermore, a comparison with results from earlier work shows that this outcome is highly dependant upon the efficiency and cost of the battery under consideration. However, it is likely that the lifecycle cost benefits of ultracapacitors in these electric vehicles would be, at most, marginal and do not justify the additional capital costs and system complexity that would be incurred in the vehicle

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles (BEVs) is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using a custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the lifecycle cost benefits as simulated appear to be marginal, and are heavily influenced by the incremental cost of power components. However, additional factors are identified which, in reality, will drive ultracapacitors towards viability in electric vehicle applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weather is one of the most significant elements affecting transit ridership on a daily basis. Until now, there has been limited focus in the literature investigating this issue. Adverse weather conditions impact travellers in choosing travel mode and route, travel schedule, and trip making itself. This paper explores the relationship between adverse weather and transit ridership by analysing the correlation between daily bus ridership and daily precipitation for a three-year period from 2010 to 2012. It is observed from the analysis that wet weather has varying impacts on daily bus ridership. Overall, rainfall negatively affects the daily bus ridership in this region. Morning peak-hours and weekend ridership were found more sensitive to rain than entire day’s ridership and weekdays. The study also found a negative correlation between the morning-peak precipitation level and the daily bus ridership, which suggests that a small amount of morning peak-hours rain reduces a significant amount bus ridership for the whole day. The analysis also confirms that summer rain has the most significant effect on ridership compared with the other three seasons. The study findings will contribute to enhancing the fundamental understanding of traveller behaviours, particularly mode choice behaviour under adverse weather conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia trachomatis infections of the male and female reproductive tracts are the world's leading sexually transmitted bacterial disease, and can lead to damaging pathology, scarring and infertility. The resolution of chlamydial infection requires the development of adaptive immune responses to infection, and includes cell-mediated and humoral immunity. Whilst cluster of differentiation (CD)4+ T cells are known to be essential in clearance of infection [1], they are also associated with immune cell infiltration, autoimmunity and infertility in the testes [2-3]. Conversely, antibodies are less associated with inflammation, are readily transported into the reproductive tracts, and can offer lumenal neutralization of chlamydiae prior to infection. Antibodies, or immunoglobulins (Ig), play a supportive role in the resolution of chlamydial infections, and this thesis sought to define the function of IgA and IgG, against a variety of chlamydial antigens expressed during the intracellular and extracellular stages of the chlamydial developmental cycle. Transport of IgA and IgG into the mucosal lumen is facilitated by receptor-mediated transcytosis yet the expression profile (under normal conditions and during urogenital chlamydial infection) of the polymeric immunoglobulin receptor (pIgR) and the neonatal Fc receptor (FcRn) remains unknown. The expression profile of pIgR and FcRn in the murine male reproductive tract was found to be polarized to the lower and upper reproductive tract tissues respectively. This demonstrates that the two receptors have a tissue tropism, which must be considered when targeting pathogens that colonize different sites. In contrast, the expression of pIgR and FcRn in the female mouse was found to be distributed in both the upper and lower reproductive tracts. When urogenitally infected with Chlamydia muridarum, both male and female reproductive tracts up-regulated expression of pIgR and down-regulated expression of FcRn. Unsurprisingly, the up-regulation of pIgR increased the concentration of IgA in the lumen. However, down-regulation of FcRn, prevented IgG uptake and led to an increase or pooling of IgG in lumenal secretions. As previous studies have identified the importance of pIgR-mediated delivery of IgA, as well as the potential of IgA to bind and neutralize intracellular pathogens, IgA against a variety of chlamydial antigens was investigated. The protection afforded by IgA against the extracellular antigen major outer membrane protein (MOMP), was found to be dependent on pIgR expression in vitro and in vivo. It was also found that in the absence of pIgR, no protection was afforded to mice previously immunized with MOMP. The protection afforded from polyclonal IgA against the intracellular chlamydial antigens; inclusion membrane protein A (IncA), inclusion membrane proteins (IncMem) and secreted chlamydial protease-like activity factor (CPAF) were produced and investigated in vitro. Antigen-specific intracellular IgA was found to bind to the respective antigen within the infected cell, but did not significantly reduce inclusion formation (p > 0.05). This suggests that whilst IgA specific for the selected antigens was transported by pIgR to the chlamydial inclusion, it was unable to prevent growth. Similarly, immunization of male mice with intracellular chlamydial antigens (IncA or IncMem), followed by depletion CD4+ T cells, and subsequent urogenital C. muridarum challenge, provided minimal pIgR-mediated protection. Wild type male mice immunized with IncA showed a 57 % reduction (p < 0.05), and mice deficient in pIgR showed a 35 % reduction (p < 0.05) in reproductive tract chlamydial burden compared to control antigen, and in the absence of CD4+ T cells. This suggests that pIgR and secretory IgA (SIgA) were playing a protective role (21 % pIgR-mediated) in unison with another antigen-specific immune mechanism (36 %). Interestingly, IgA generated during a primary respiratory C. muridarum infection did not provide a significant amount of protection to secondary urogenital C. muridarum challenge. Together, these data suggest that IgA specific for an extracellular antigen (MOMP) can play a strong protective role in chlamydial infections, and that IgA targeting intracellular antigens is also effective but dependent on pIgR expression in tissues. However, whilst not investigated here, IgA targeting and blocking other intracellular chlamydial antigens, that are more essential for replication or type III secretion, may be more efficacious in subunit vaccines. Recently, studies have demonstrated that IgG can neutralize influenza virus by trafficking IgG-bound virus to lysosomes [4]. We sought to determine if this process could also traffic chlamydial antigens for degradation by lysosomes, despite Chlamydia spp. actively inhibiting fusion with the host endocytic pathway. As observed in pIgR-mediated delivery of anti-IncA IgA, FcRn similarly transported IgG specific for IncA which bound the inclusion membrane. Interestingly, FcRn-mediated delivery of anti-IncA IgG significantly decreased inclusion formation by 36 % (p < 0.01), and induced aberrant inclusion morphology. This suggests that unlike IgA, IgG can facilitate additional host cellular responses which affect the intracellular niche of chlamydial growth. Fluorescence microscopy revealed that IgG also bound the inclusion, but unlike influenza studies, did not induce the recruitment of lysosomes. Notably, anti-IncA IgG recruited sequestosomes to the inclusion membrane, markers of the ubiquitin/proteasome pathway and major histocompatibility complex (MHC) class I loading. To determine if the protection against C. muridarum infection afforded by IncA IgG in vitro translated in vivo, wild type mice and mice deficient in functional FcRn and MHC-I, were immunized, depleted of CD4+, and urogenitally infected with C. muridarum. Unlike in pIgR-deficient mice, the protection afforded from IncA immunization was completely abrogated in mice lacking functional FcRn and MHC-I/CD8+. Thus, both anti-IncA IgA and IgG can bind the inclusion in a pIgR and FcRn-mediated manner, respectively. However, only IgG mediates a higher reduction in chlamydial infection in vitro and in vivo suggesting more than steric blocking of IncA had occurred. Unlike anti-MOMP IgA, which reduced chlamydial infection of epithelial cells and male mouse tissues, IgG was found to enhance infectivity in vitro, and in vivo. Opsonization of EBs with MOMP-IgG enhanced inclusion formation of epithelial cells in a MOMP-IgG dose-dependent and FcRn-dependent manner. When MOMP-IgG opsonized EBs were inoculated into the vagina of female mice, a small but non-significant (p > 0.05) enhancement of cervicovaginal C. muridarum shedding was observed three days post infection in mice with functional FcRn. Interestingly, infection with opsonized EBs reduced the intensity of the peak of infection (day six) but protracted the duration of infection by 60 % in wild type mice only. Infection with EBs opsonized in IgG also significantly increased (p < 0.05) hydrosalpinx formation in the oviducts and induced lymphocyte infiltration uterine horns. As MOMP is an immunodominant antigen, and is widely used in vaccines, the ability of IgG specific to extracellular chlamydial antigens to enhance infection and induce pathology needs to be considered. Together, these data suggest that immunoglobulins play a dichotomous role in chlamydial infections, and are dependent on antigen specificity, FcRn and pIgR expression. FcRn was found to be highly expressed in upper male reproductive tract, whilst pIgR was dominantly expressed in the lower reproductive tract. Conversely, female mice expressed FcRn and pIgR in both the lower and upper reproductive tracts. In response to a normal chlamydial infection, pIgR is up-regulated increasing secretory IgA release, but FcRn is down-regulated preventing IgG uptake. Similarly to other studies [5-6], we demonstrate that IgA and IgG generated during primary chlamydial infections plays a minor role in recall immunity, and that antigen-specific subunit vaccines can offer more protection. We also show that both IgA and IgG can be used to target intracellular chlamydial antigens, but that IgG is more effective. Finally, IgA against the extracellular antigen MOMP can afford protection, whist IgG plays a deleterious role by increasing infectivity and inducing damaging immunopathology. Further investigations with additional antigens or combination subunit vaccines will enhance our understanding the protection afforded by antibodies against intracellular and extracellular pathogenic antigens, and help improve the development of an efficacious chlamydial vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To investigate the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness of young adults. Methods A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 15 emmetropic young adults over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, – 2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) in diurnal rhythms were examined. Results Both axial length and choroidal thickness underwent significant diurnal changes on each of the three measurement days (p<0.0001). The introduction of monocular hyperopic defocus resulted in significant changes in the diurnal variations observed in both parameters (p<0.05). A significant (p<0.001) increase in the mean amplitude (peak to trough) of change in axial length (mean increase, 0.016 ± 0.005 mm) and choroidal thickness (mean increase, 0.011 ± 0.003 mm) was observed on day 2 with hyperopic defocus compared to the two ‘no defocus’ days (days 1 and 3). At the second measurement (mean time 12:10 pm) on the day with hyperopic defocus, the eye was significantly longer by 0.012 ± 0.002 mm compared to the other two days (p<0.05). No significant difference was observed in the average timing of the daily peaks in axial length (mean peak time 12:12 pm) and choroidal thickness (21:02 pm) over the three days. Conclusions The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of the diurnal change in axial length and choroidal thickness that returned to normal the following day after removal of the blur stimulus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroscopic Fundamental Diagram (MFD) has been proved to exist in large urban road and freeway networks by theoretic method and real data in cities. However hysteresis and scatters have also been found existed both on motorway network and urban road. This paper investigates how the incident variables affect the scatter and shape of the MFD using both the simulated data and the real data collected from the Pacific Motorway M3 in Brisbane, Australia. Three key components of incident are investigated based on the simulated data: incident location, incident duration time and traffic demand. Results based on the simulated data indicate that MFD shape is a property not only of the network itself but also of the incident characteristics variables. MFDs for three types of real incidents (crash, hazard and breakdown) are explored separately. The results based on the empirical data are consistent with the simulated results. The hysteresis phenomenon occurs on both the upstream and the downstream of the incident location, but for opposite hysteresis loops. Gradient of the MFD for the upstream is more than that for the downstream on the incident site, when traffic demand is off peak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (V·O2peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. Methods Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise–diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg-1·kg-1 body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). Results There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). Conclusion We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability. It has long been known that endurance training induces a multitude of metabolic and morphological adaptations that improve the resistance of the trained musculature to fatigue and enhance endurance capacity and/or exercise performance (13). Accumulating evidence now suggests that many of these adaptations can be modified by nutrient availability (9–11,21). Growing evidence suggests that training with reduced muscle glycogen using a “train twice every second day” compared with a more traditional “train once daily” approach can enhance the acute training response (29) and markers representative of endurance training adaptation after short-term (3–10 wk) training interventions (8,16,30). Of note is that the superior training adaptation in these previous studies was attained despite a reduction in maximal self-selected power output (16,30). The most obvious factor underlying the reduced intensity during a second training bout is the reduction in muscle glycogen availability. However, there is also the possibility that other metabolic and/or neural factors may be responsible for the power drop-off observed when two exercise bouts are performed in close proximity. Regardless of the precise mechanism(s), there remains the intriguing possibility that the magnitude of training adaptation previously reported in the face of a reduced training intensity (Hulston et al. (16) and Yeo et al.) might be further augmented, and/or other aspects of the training stimulus better preserved, if power output was not compromised. Caffeine ingestion is a possible strategy that might “rescue” the aforementioned reduction in power output that occurs when individuals commence high-intensity interval training (HIT) with low compared with normal glycogen availability. Recent evidence suggests that, at least in endurance-based events, the maximal benefits of caffeine are seen at small to moderate (2–3 mg·kg-1 body mass (BM)) doses (for reviews, see Refs. (3,24)). Accordingly, in this study, we aimed to determine the effect of a low dose of caffeine (3 mg·kg-1 BM) on maximal self-selected power output during HIT commenced with either normal (NORM) or low (LOW) muscle glycogen availability. We hypothesized that even under conditions of low glycogen availability, caffeine would increase maximal self-selected power output and thereby partially rescue the reduction in training intensity observed when individuals commence HIT with low glycogen availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Hyperactive platelets contribute to the thrombotic response in humans, and exercise transiently increases platelet function. Caffeine is routinely used by athletes as an ergogenic aid, but the combined effect of exercise and caffeine on platelet function has not been investigated. Methods: Twelve healthy males were randomly assigned to one of four groups and undertook four experimental trials of a high-intensity aerobic interval training (AIT) bout or rest with ingestion of caffeine (3 mg·kg-1) or placebo. AIT was 8 × 5 min at approximately 75% peak power output (approximately 80% V?O2peak) and 1-min recovery (approximately 40% peak power output, approximately 50% V?O2peak) intervals. Blood/urine was collected before, 60, and 90 min after capsule ingestion and analyzed for platelet aggregation/activation. Results: AIT increased platelet reactivity to adenosine diphosphate (placebo 30.3%, caffeine 13.4%, P < 0.05) and collagen (placebo 10.8%, caffeine 5.1%, P < 0.05) compared with rest. Exercise placebo increased adenosine diphosphate-induced aggregation 90 min postingestion compared with baseline (40.5%, P < 0.05), but the increase when exercise was combined with caffeine was small (6.6%). During the resting caffeine protocol, collagen-induced aggregation was reduced (-4.3%, P < 0.05). AIT increased expression of platelet activation marker PAC-1 with exercise placebo (P < 0.05) but not when combined with caffeine. Conclusion: A single bout of AIT increases platelet function, but caffeine ingestion (3 mg·kg) does not exacerbate platelet function at rest or in response to AIT. Our results provide new information showing caffeine at a dose that can elicit ergogenic effects on performance has no detrimental effect on platelet function and may have the potential to attenuate increases in platelet activation and aggregation when undertaking strenuous exercise.