Lateral impact response and parametric studies of axially loaded square concrete filled steel tube columns


Autoria(s): Aghdamy, Sanam; Thambiratnam, David; Dhanasekar, Manicka; Saiedi, Saied
Contribuinte(s)

Topping, B.H.V.

Iványi, P.

Data(s)

2013

Resumo

This paper presents a numerical study on the response of axially loaded slender square concrete filled steel tube (CFST) columns under low velocity lateral impact loading. A finite element analysis (FEA) model was developed using the explicit dynamic nonlinear finite element code LS -DYNA in which the strain rate effects of both steel and concrete, contact between steel tube and concrete and confinement effect provided by the steel tube for the concrete were considered. The model also benefited from a relatively recent feature of LS-DYNA for applying a pre-loading in the explicit solver. The developed numerical model was verified for its accuracy and adequacy by comparing the results with experimental results available in the literature. The verified model was then employed to conduct a parametric study to investigate the influence of axial load level, impact location, support conditions, and slenderness ratio on the response of the CFST columns. A good agreement between the numerical and experimental results was achieved. The model could reasonably predict the impact load-deflection history and deformed shape of the column at the end of the impact event. The results of the parametric study showed that whilst impact location, axial load level and slenderness ratio can have a significant effect on the peak impact force, residual lateral deflection and maximum lateral deflection, the influence of support fixity is minimal. With an increase of axial load to up to a certain level, the peak force increases; however, a further increase in the axial load causes a decrease in the peak force. Both residual lateral deflection and maximum lateral deflection increase as axial load level increases. Shifting the impact location towards the supports increases the peak force and reduces both residual and maximum lateral deflections. A rise in slenderness ratio decreases the peak force and increases the residual and maximum lateral deflections.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/63268/

Publicador

Civil-Comp Press

Relação

http://eprints.qut.edu.au/63268/1/CC2013-Paper-Sanam_Aghdamy.pdf

DOI:10.4203/ccp.102.12

Aghdamy, Sanam, Thambiratnam, David, Dhanasekar, Manicka, & Saiedi, Saied (2013) Lateral impact response and parametric studies of axially loaded square concrete filled steel tube columns. In Topping, B.H.V. & Iványi, P. (Eds.) Proceedings of the 14th International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Cagliari, Sardinia, Italy.

Direitos

Copyright 2013 Civil-comp Press

Fonte

School of Civil Engineering & Built Environment; Faculty of Built Environment and Engineering

Palavras-Chave #090000 ENGINEERING #Dynamic analysis #Numerical simulation #Concrete filled steel tube #Low velocity lateral impact
Tipo

Conference Paper