988 resultados para PULSE-COUPLED OSCILLATORS
Resumo:
The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.
Resumo:
Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.
Resumo:
We use a resistive-pulse technique to analyze molecular hybrids of single-wall carbon nanotubes (SWNTs) wrapped in either single-stranded DNA or protein. Electric fields confined in a glass capillary nanopore allow us to probe the physical size and surface properties of molecular hybrids at the single-molecule level. We find that the translocation duration of a macromolecular hybrid is determined by its hydrodynamic size and solution mobility. The event current reveals the effects of ion exclusion by the rod-shaped hybrids and possible effects due to temporary polarization of the SWNT core. Our results pave the way to direct sensing of small DNA or protein molecules in a large unmodified solid-state nanopore by using nanofilaments as carriers. © 2013 American Chemical Society.
3 Gbit/s LED-based step index plastic optical fiber link using multilevel pulse amplitude modulation
Resumo:
Multilevel PAM is investigated for a LED-based SI-POF link. Using PAM-8, transmission at a record 3 Gbit/s is demonstrated for a maximum length of 25 m step index POF with offline post-receiver processing. © 2013 OSA.
Resumo:
The circumstances are investigated under which high peak acceleration can occur in the internal parts of a system when subjected to impulsive driving on the outside. Previous work using a coupled beam model has highlighted the importance of veering pairs of modes. Such a veering pair can be approximated by a lumped system with two degrees of freedom. The worst case of acceleration amplification is shown to occur when the two oscillators are tuned to the same frequency, and for this case closed-form expressions are derived to show the parameter dependence of the acceleration ratio on the mass ratio and coupling strength. Sensitivity analysis of the eigenvalues and eigenvectors indicates that mass ratio is the most sensitive parameter for altering the veering behaviour in an undamped system. Non-proportional damping is also shown to have a strong influence on the veering behaviour. The study gives design guidelines to allow permissible acceleration levels to be achieved by the choice of the effective mass and damping of the indirectly driven subsystem relative to the directly driven subsystem. © 2013 Elsevier Ltd.
Resumo:
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.
Resumo:
High-performance power switching devices (IGBT/MOSFET) realise high-performance power converters. Unfortunately, with a high switching speed of the IGBT or MOSFET freewheel diode chopper cell, the circuit has intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally demanded on the load and supply side. Although an S-shaped voltage transient with a high order of derivation eliminates the discontinuity and could suppress HF spectrum of EMI emissions, a practical control scheme is still under development. In this paper, Active Voltage Control (AVC) is applied to successfully define IGBT switching dynamics with a smoothed Gaussian waveform so a reduced EMI can be achieved without extra EMI suppression devices. © 2013 IEEE.
Resumo:
This paper investigates the vibration dynamics of a closed-chain, cross-coupled architecture of MEMS resonators. The system presented here is electrostatically transduced and operates at 1.04 MHz. Curve veering of the eigenvalue loci is used to experimentally quantify the coupling spring constants. Numerical simulations of the motional resistance variation against induced perturbation are used to assess the robustness of the cross-coupled system as opposed to equivalent traditional open-ended linear one-dimensional coupling scheme. Results show improvements of as much as 32% in the motional resistance between the cross-coupled system and its one-dimensional counterpart. © 2013 IEEE.
Resumo:
This paper presents a numerical study of the impact of process-induced variations on the achievable motional resistance Rx of one-dimensional, cyclic and cross-coupled architectures of electrostatically transduced MEMS resonators operating in the 250 kHz range. Monte Carlo numerical simulations which accounted for up to 0.75% variation in critical resonator feature sizes were initiated on 1, 2, 3, 4, 5 and 9 coupled MEMS resonators for three distinct coupling architectures. Improvements of 100X in the spread of Rx and 2.7X in mean achievable Rx are reported for the case of 9 resonators when implemented in the cross-coupled topology, as opposed to the traditional one-dimensional chain. © 2013 IEEE.
Resumo:
A theoretical study compares 100 Gb/s Ethernet links and finds that multi-pulse and hybrid CAP-16/QAM-16 (PAM-8) schemes support transmission over 10 km (2 km) SMF. Multi-pulse and CAP-16/QAM-16 need 2× the number of arithmetic operations and 7× or 3× the number of filter taps respectively but exhibit reduced power dissipation compared with PAM-8.
Resumo:
We report an ultrafast fiber laser based on carbon nanotube saturable absorber. 84 fs pulses are generated directly from the fiber oscillator with 61.2 nm spectral width. © 2011 Optical Society of America.
Resumo:
This paper reports a monolithically integrated mode-locked narrow stripe QD MOPA operating at 1300nm generating a stable 20GHz pulse train with an average power of 46.4mW and a pulse duration of 8.3ps. © Optical Society of America.
Resumo:
We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.