19 resultados para PULSE-COUPLED OSCILLATORS
em CaltechTHESIS
Resumo:
The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.
The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.
Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.
Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.
Resumo:
This thesis considers in detail the dynamics of two oscillators with weak nonlinear coupling. There are three classes of such problems: non-resonant, where the Poincaré procedure is valid to the order considered; weakly resonant, where the Poincaré procedure breaks down because small divisors appear (but do not affect the O(1) term) and strongly resonant, where small divisors appear and lead to O(1) corrections. A perturbation method based on Cole's two-timing procedure is introduced. It avoids the small divisor problem in a straightforward manner, gives accurate answers which are valid for long times, and appears capable of handling all three types of problems with no change in the basic approach.
One example of each type is studied with the aid of this procedure: for the nonresonant case the answer is equivalent to the Poincaré result; for the weakly resonant case the analytic form of the answer is found to depend (smoothly) on the difference between the initial energies of the two oscillators; for the strongly resonant case we find that the amplitudes of the two oscillators vary slowly with time as elliptic functions of ϵ t, where ϵ is the (small) coupling parameter.
Our results suggest that, as one might expect, the dynamical behavior of such systems varies smoothly with changes in the ratio of the fundamental frequencies of the two oscillators. Thus the pathological behavior of Whittaker's adelphic integrals as the frequency ratio is varied appears to be due to the fact that Whittaker ignored the small divisor problem. The energy sharing properties of these systems appear to depend strongly on the initial conditions, so that the systems not ergodic.
The perturbation procedure appears to be applicable to a wide variety of other problems in addition to those considered here.
Resumo:
In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.
A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.
In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.
A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.
Resumo:
With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.
Resumo:
Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.
We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.
We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.
Resumo:
This dissertation describes studies of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) using unnatural amino acid mutagenesis to gain high precision insights into the function of these important membrane proteins.
Chapter 2 considers the functional role of highly conserved proline residues within the transmembrane helices of the D2 dopamine GPCR. Through mutagenesis employing unnatural α-hydroxy acids, proline analogs, and N-methyl amino acids, we find that lack of backbone hydrogen bond donor ability is important to proline function. At one proline site we additionally find that a substituent on the proline backbone N is important to receptor function.
In Chapter 3, side chain conformation is probed by mutagenesis of GPCRs and the muscle-type nAChR. Specific side chain rearrangements of highly conserved residues have been proposed to accompany activation of these receptors. These rearrangements were probed using conformationally-biased β-substituted analogs of Trp and Phe and unnatural stereoisomers of Thr and Ile. We also modeled the conformational bias of the unnatural Trp and Phe analogs employed.
Chapters 4 and 5 examine details of ligand binding to nAChRs. Chapter 4 describes a study investigating the importance of hydrogen bonds between ligands and the complementary face of muscle-type and α4β4 nAChRs. A hydrogen bond involving the agonist appears to be important for ligand binding in the muscle-type receptor but not the α4β4 receptor.
Chapter 5 describes a study characterizing the binding of varenicline, an actively prescribed smoking cessation therapeutic, to the α7 nAChR. Additionally, binding interactions to the complementary face of the α7 binding site were examined for a small panel of agonists. We identified side chains important for binding large agonists such as varenicline, but dispensable for binding the small agonist ACh.
Chapter 6 describes efforts to image nAChRs site-specifically modified with a fluorophore by unnatural amino acid mutagenesis. While progress was hampered by high levels of fluorescent background, improvements to sample preparation and alternative strategies for fluorophore incorporation are described.
Chapter 7 describes efforts toward a fluorescence assay for G protein association with a GPCR, with the ultimate goal of probing key protein-protein interactions along the G protein/receptor interface. A wide range of fluorescent protein fusions were generated, expressed in Xenopus oocytes, and evaluated for their ability to associate with each other.
Resumo:
A set of coupled-channel differential equations based on a rotationally distorted optical potential is used to calculate the wave functions required to evaluate the gamma ray transition rate from the first excited state to the ground state in ^(13)C and ^(13)N. The bremsstrahlung differential cross section of low energy protons is also calculated and compared with existing data. The marked similarity between the potentials determined at each resonance level in both nuclei supports the hypothesis of the charge symmetry of nuclear forces by explaining the deviation of the ratios of the experimental E1 transition strengths from unity.
Resumo:
The olfactory bulb of mammals aids in the discrimination of odors. A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations of the highly non-linear model produce a 35-60 Hz modulated activity, which is coherent across the bulb. The decision states (for the odor information) in this system can be thought of as stable cycles, rather than as point stable states typical of simpler neuro-computing models. Analysis shows that a group of coupled non-linear oscillators are responsible for the oscillatory activities. The output oscillation pattern of the bulb is determined by the odor input. The model provides a framework in which to understand the transformation between odor input and bulbar output to the olfactory cortex. This model can also be extended to other brain areas such as the hippocampus, thalamus, and neocortex, which show oscillatory neural activities. There is significant correspondence between the model behavior and observed electrophysiology.
It has also been suggested that the olfactory bulb, the first processing center after the sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity enhancement by motivation, and other olfactory psychophysical phenomena. The input from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able to modulate the response, and thus the sensitivity, of the bulb to odor input. It follows that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) while remaining sensitive to new odors, or can increase its sensitivity to discover interesting new odors. Other olfactory psychophysical phenomena such as cross-adaptation are also discussed.
Resumo:
This dissertation will cover several disparate topics, with the overarching theme centering on the investigation of organometallic C-H activation and hydrocarbon transformation and upgrading. Chapters 2 and 3 discuss iridium and rhodium analogues of the Shilov cycle catalyst for methane to methanol oxidation, and Chapter 4 on the recently discovered ROA mechanistic motif in catalysts for various alkane partial oxidation reactions. In addition, Chapter 5 discusses the mechanism of nickel pyridine bisoxazoline Negishi catalysts for asymmetric and stereoconvergent C-C coupling, and the appendices discuss smaller projects on rhodium H/D exchange catalysts and DFT method benchmarking.
Resumo:
Kinetic and electronic processes in a Cu/CuCl double pulsed laser were investigated by measuring discharge and laser pulse characteristics, and by computer modeling. There are two time scales inherent to the operation of the Cu/CuCl laser. The first is during the interpulse afterglow (tens to hundreds of microseconds). The second is during the pumping pulse (tens of nanoseconds). It was found that the character of the pumping pulse is largely determined by the initial conditions provided by the interpulse afterglow. By tailoring the dissociation pulse to be long and low energy, and by conditioning the afterglow, one may select the desired initial conditions and thereby significantly improve laser performance. With a low energy dissociation pulse, the fraction of metastable copper obtained from a CuCl dissociation is low. By maintaining the afterglow, contributions to the metastable state from ion recombinations are prevented, and the plasma impedance remains low thereby increasing the rate of current rise during the pumping pulse. Computer models for the dissociation pulse, afterglow, pumping pulse and laser pulse reproduced experimentally observed behavior of laser pulse energy and power as a function of time delay, pumping pulse characteristics, and buffer gas pressure. The sensitivity of laser pulse properties on collisional processes (e.g., CuCl reassociation rates) was investigated.
Resumo:
Part one of this thesis consists of two sections. In the first section the fluorine chemical shift of a single crystal CaF_2 has been measured as a function of external pressure up to 4 kilobar at room temperature using multiple pulse NMR techniques. The pressure dependence of the shift is found to be -1.7 ± 1 ppm/kbar, while a theoretical calculation using an overlap model predicts a shift of -0.46 ppm/kbar. In the second section a separation of the chemical shift tensor into physically meaningful "geometrical" and "chemical" contributions is presented and a comparison of the proposed model calculations with recently reported data on hydroxyl proton chemical shift tensors demonstrates, that for this system, the geometrical portion accounts for the qualitative features of the measured tensors.
Part two of the thesis consists of a study of fluoride ion motion in β-PbF_2 doped with NaF by measurement of the ^(19)F transverse relaxation time (T_2), spin lattice relaxation time (T_1) and the spin lattice relaxation time in the rotating frame (T_(1r)). Measurements over the temperature range of -50°C to 160°C lead to activation energies for T_1, T_(1r) and T_2 of 0.205 ± 0.01, 0.29 + 0.02 and 0.27 ± 0.01 ev/ion, and a T_(1r) minimum at 56°C yields a correlation time of 0.74 μsec. Pressure dependence of T_1 and T_2 yields activation volumes of <0.2 cm^3/g-mole and 1.76 ± 0.05 cm^3/g-mole respectively. These data along with the measured magnetic field independence of T_1 suggest that the measured T_1's are not caused by ^(19)F motion, but by thermally excited carriers.
Part three of the thesis consists of a study of two samples of Th_4H_(15), prepared under different conditions but both having the proper ratio of H/Th (to within 1%). The structure of the Th_4H_(15) as suggested by X-ray measurements is confirmed through a moment analysis of the rigid lattice line shape. T_1 and T_2 measurements above 390 K furnish activation energies of 16.3 ± 1.2 kcal/mole and 18.0 ± 3.0 kcal/mole, respectively. Below 350 K, T_(1r) measurements furnish an activation energy of 10.9 ± 0.7 kcal/mole, indicating most probably more than a single mechanism for proton motion. A time-temperature hysteresis effect of the proton motion was found in one of the two samples and is strongly indicative of a phase change. T_1 at room temperature and below is dominated by relaxation due to conduction electrons with the product T_1T being 180 ± 10 K-sec. Using multiple pulse techniques to greatly reduce homonuclear dipolar broadening, a temperature-dependent line shift was observed, and the chemical shift anisotropy is estimated to be less than 16 ppm.
Resumo:
Experimental demonstrations and theoretical analyses of a new electromechanical energy conversion process which is made feasible only by the unique properties of superconductors are presented in this dissertation. This energy conversion process is characterized by a highly efficient direct energy transformation from microwave energy into mechanical energy or vice versa and can be achieved at high power level. It is an application of a well established physical principle known as the adiabatic theorem (Boltzmann-Ehrenfest theorem) and in this case time dependent superconducting boundaries provide the necessary interface between the microwave energy on one hand and the mechanical work on the other. The mechanism which brings about the conversion is another known phenomenon - the Doppler effect. The resonant frequency of a superconducting resonator undergoes continuous infinitesimal shifts when the resonator boundaries are adiabatically changed in time by an external mechanical mechanism. These small frequency shifts can accumulate coherently over an extended period of time to produce a macroscopic shift when the resonator remains resonantly excited throughout this process. In addition, the electromagnetic energy in s ide the resonator which is proportional to the oscillation frequency is al so accordingly changed so that a direct conversion between electromagnetic and mechanical energies takes place. The intrinsically high efficiency of this process is due to the electromechanical interactions involved in the conversion rather than a process of thermodynamic nature and therefore is not limited by the thermodynamic value.
A highly reentrant superconducting resonator resonating in the range of 90 to 160 MHz was used for demonstrating this new conversion technique. The resonant frequency was mechanically modulated at a rate of two kilohertz. Experimental results showed that the time evolution of the electromagnetic energy inside this frequency modulated (FM) superconducting resonator indeed behaved as predicted and thus demonstrated the unique features of this process. A proposed usage of FM superconducting resonators as electromechanical energy conversion devices is given along with some practical design considerations. This device seems to be very promising in producing high power (~10W/cm^3) microwave energy at 10 - 30 GHz.
Weakly coupled FM resonator system is also analytically studied for its potential applications. This system shows an interesting switching characteristic with which the spatial distribution of microwave energies can be manipulated by external means. It was found that if the modulation was properly applied, a high degree (>95%) of unidirectional energy transfer from one resonator to the other could be accomplished. Applications of this characteristic to fabricate high efficiency energy switching devices and high power microwave pulse generators are also found feasible with present superconducting technology.
Resumo:
Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an "experimentally reasonable" repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4π Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a Si3N4 membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5$ fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.
Resumo:
Proton-coupled electron transfer (PCET) reactions are ubiquitous throughout chemistry and biology. However, challenges arise in both the the experimental and theoretical investigation of PCET reactions; the rare-event nature of the reactions and the coupling between quantum mechanical electron- and proton-transfer with the slower classical dynamics of the surrounding environment necessitates the development of robust simulation methodology. In the following dissertation, novel path-integral based methods are developed and employed for the direct simulation of the reaction dynamics and mechanisms of condensed-phase PCET.
Resumo:
G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.
In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.
To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.
Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.