918 resultados para Oven drying
Resumo:
Purpose – This paper aims to present an open-ended microwave curing system for microelectronics components and a numerical analysis framework for virtual testing and prototyping of the system, enabling design of physical prototypes to be optimized, expediting the development process. Design/methodology/approach – An open-ended microwave oven system able to enhance the cure process for thermosetting polymer materials utilised in microelectronics applications is presented. The system is designed to be mounted on a precision placement machine enabling curing of individual components on a circuit board. The design of the system allows the heating pattern and heating rate to be carefully controlled optimising cure rate and cure quality. A multi-physics analysis approach has been adopted to form a numerical model capable of capturing the complex coupling that exists between physical processes. Electromagnetic analysis has been performed using a Yee finite-difference time-domain scheme, while an unstructured finite volume method has been utilized to perform thermophysical analysis. The two solvers are coupled using a sampling-based cross-mapping algorithm. Findings – The numerical results obtained demonstrate that the numerical model is able to obtain solutions for distribution of temperature, rate of cure, degree of cure and thermally induced stresses within an idealised polymer load heated by the proposed microwave system. Research limitations/implications – The work is limited by the absence of experimentally derived material property data and comparative experimental results. However, the model demonstrates that the proposed microwave system would seem to be a feasible method of expediting the cure rate of polymer materials. Originality/value – The findings of this paper will help to provide an understanding of the behaviour of thermosetting polymer materials during microwave cure processing.
Resumo:
Heating in an idealised polymer load in a novel open-ended variable frequency microwave oven is numerically simulated using a couple solver approach. The frequency-agile microwave oven bonding system (FAMOBS)is developed to meet rapid polymer curing requirements in microelectronics and optoelectronics manufacturing. The heating of and idealised polymer load has been investigated through numerical modelling. Assessment of the system comprises of simulation of electromagnetic fields and of temperature distribution within the load. Initial simulation results are presented and contrasted with experimental analysis of field distribution
Resumo:
Summary form only given. Currently the vast majority of adhesive materials in electronic products are bonded using convection heating or infra-red as well as UV-curing. These thermal processing steps can take several hours to perform, slowing throughput and contributing a significant portion of the cost of manufacturing. With the demand for lighter, faster, and smaller electronic devices, there is a need for innovative material processing techniques and control methodologies. The increasing demand for smaller and cheaper devices pose engineering challenges in designing a curing systems that minimize the time required between the curing of devices in a production line, allowing access to the components during curing for alignment and testing. Microwave radiation exhibits several favorable characteristics and over the past few years has attracted increased academic and industrial attention as an alternative solution to curing of flip-chip underfills, bumps, glob top and potting cure, structural bonding, die attach, wafer processing, opto-electronics assembly as well as RF-ID tag bonding. Microwave energy fundamentally accelerates the cure kinetics of polymer adhesives. It provides a route to focus heat into the polymer materials penetrating the substrates that typically remain transparent. Therefore microwave energy can be used to minimise the temperature increase in the surrounding materials. The short path between the energy source and the cured material ensures a rapid heating rate and an overall low thermal budget. In this keynote talk, we will review the principles of microwave curing of materials for high density packing. Emphasis will be placed on recent advances within ongoing research in the UK on the realization of "open-oven" cavities, tailored to address existing challenges. Open-ovens do not require positioning of the device into the cavity through a movable door, hence being more suitable for fully automated processing. Further potential advantages of op- - en-oven curing include the possibility for simultaneous fine placement and curing of the device into a larger assembly. These capabilities promise productivity gains by combining assembly, placement and bonding into a single processing step. Moreover, the proposed design allows for selective heating within a large substrate, which can be useful particularly when the latter includes parts sensitive to increased temperatures.
Resumo:
Thawing of a frozen food product in a domestic microwave oven is numerically simulated using a coupled solver approach. The approach consists of a dedicated electromagnetic FDTD solver and a closely coupled UFVM multi-physics package. Two overlapping numerical meshes are defined; the food material and container were meshed for heat transfer and phase change solution, whilst the microwave oven cavity and waveguide were meshed for the microwave irradiation. The two solution domains were linked using a cross-mapping routine. This approach allowed the rotation of the food load to be captured. Power densities obtained on the structured FDTD mesh were interpolated onto the UFVM mesh for each timestep/turntable position. The UFVM solver utilised the power density data to advance the temperature and phase distribution solution. The temperature-dependant dielectric and thermo-physical properties of the food load were updated prior to revising the electromagnetic solution. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Two scenarios were investigated: a centric and eccentric placement on the turntable. Developing temperature fields predicted by the numerical solution are validated against experimentally obtained data. Presented results indicate the feasibility of fully coupled simulations of the microwave heating of a frozen product. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Comparison of the performance of a conventional convection oven system with a dual-section microwave system for curing thermosetting polymer encapsulant materials has been performed numerically. A numerical model capable of analysing both the convection and microwave cure processes has been developed and is breifly outliines. The model is used to analyse the curing of a commercially available encapsulant material using both systems. Results obtained from numerical solutions are presented, confirming that the VFM system enables the cure process to be carried out far more rapidly than with the convection oven system. This capability stems from the fundamental heating processes involved, namely that microwave processing enables the heating rate to be varied independently of the material temperature. Variations in cure times, curing rates, maximum temperatures and residual stresses between the processes are fully discussed.
Resumo:
Curing of encapsulant material in a simplified microelectronics package using an open oven Variable Frequency Microwave (VFM) system is numerically simulated using a coupled solver approach. A numerical framework capable of simulating electromagnetic field distribution within the oven system, plus heat transfer, cure rate, degree of cure and thermally induced stresses within the encapsulant material is presented. The discrete physical processes have been integrated into a fully coupled solution, enabling usefully accurate results to be generated. Numerical results showing the heating and curing of the encapsulant material have been obtained and are presented in this contribution. The requirement to capture inter-process coupling and the variation in dielectric and thermophysical material properties is discussed and illustrated with simulation results.
Resumo:
Variable Frequency Microwave (VFM) processing of heterogeneous chip-on-board assemblies is assessed using a multiphysics modelling approach. The Frequency Agile Microwave Oven Bonding System (FAMOBS) is capable of rapidly processing individual packages on a Chip-On-Board (COB) assembly. This enables each package to be processed in an optimal manner, with temperature ramp rate, maximum temperature and process duration tailored to the specific package, a significant benefit in assemblies containing disparate package types. Such heterogeneous assemblies may contain components such as large power modules alongside smaller modules containing low thermal budget materials with highly disparate processing requirements. The analysis of two disparate packages has been assessed numerically to determine the applicability of the dual section microwave system to curing heterogeneous devices and to determine the influence of differing processing requirements of optimal process parameters.
Resumo:
Thermosetting polymer materials are widely utilised in modern microelectronics packaging technology. These materials are used for a number of functions, such as for device bonding, for structural support applications and for physical protection of semiconductor dies. Typically, convection heating systems are used to raise the temperature of the materials to expedite the polymerisation process. The convection cure process has a number of drawbacks including process durations generally in excess of 1 hour and the requirement to heat the entire printed circuit board assembly, inducing thermomechanical stresses which effect device reliability. Microwave energy is able to raise the temperature of materials in a rapid, controlled manner. As the microwave energy penetrates into the polymer materials, the heating can be considered volumetric – i.e. the rate of heating is approximately constant throughout the material. This enables a maximal heating rate far greater than is available with convection oven systems which only raise the surface temperature of the polymer material and rely on thermal conductivity to transfer heat energy into the bulk. The high heating rate, combined with the ability to vary the operating power of the microwave system, enables the extremely rapid cure processes. Microwave curing of a commercially available encapsulation material has been studied experimentally and through use of numerical modelling techniques. The material assessed is Henkel EO-1080, a single component thermosetting epoxy. The producer has suggested three typical convection oven cure options for EO1080: 20 min at 150C or 90 min at 140C or 120 min at 110C. Rapid curing of materials of this type using advanced microwave systems, such as the FAMOBS system [1], is of great interest to microelectronics system manufacturers as it has the potential to reduce manufacturing costs, increase device reliability and enables new device designs. Experimental analysis has demonstrated that, in a realistic chip-on-board encapsulation scenario, the polymer material can be fully cured in approximately one minute. This corresponds to a reduction in cure time of approximately 95 percent relative to the convection oven process. Numerical assessment of the process [2] also suggests that cure times of approximately 70 seconds are feasible whilst indicating that the decrease in process duration comes at the expense of variation in degree of cure within the polymer.
Resumo:
Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.
Resumo:
Wild leafy vegetables play a vital role in the livelihoods of many communities in Africa. The focus of this study was to investigate the nutritional value of wild vegetables commonly consumed by the people of Buhera District in the Manicaland province of Zimbabwe. A variety of vegetables including Amaranthus hybridus, Cleome gynandra, Bidens pilosa, Corchorus tridens, and Adansonia digitata were collected during a survey in Buhera District. Samples were processed employing traditional methods of cooking and drying, then subjected to proximate and micronutrient analyses. The results indicate that these vegetables were particularly high in calcium, iron, and vitamin C. Compared with Brassica napus (rape), Amaranthus hybridus contained twice the amount of calcium, with other nutrients almost in the same range. Compared with Spinacia oleracea (spinach), Amaranthus hybridus contained three times more vitamin C (44 mg/100 g). Calcium levels were 530 mg/100 g. Amaranthus hybridus was also found to contain 7, 13, and 20 times more vitamin C, calcium, and iron respectively compared with Lactuca sativa (lettuce). Cleome gynandra contained 14 mg/100 g, 115 mg/100 g, 9 mg/100 g of vitamin C, calcium, and iron respectively. Bidens pilosa was found to be a valuable source of vitamin C (63 mg/100 g), iron (15 mg/100 g), and zinc (19 mg/100 g), compared with Brassica oleracea (cabbage). The leaves of Corchorus tridens were an excellent source of vitamin C (78 mg/100 g), calcium (380 mg/100 g), and iron (8 mg/100 g). The Adansonia digitata leaves were also rich in vitamin C (55 mg/100 g), iron (23 mg/ 100 g), and calcium (400 mg/100 g). Based on these nutrient contents, the above vegetables will have potential benefits as part of feeding programmes, as well as their promotion as part of composite diet for vulnerable groups.
Resumo:
OBJECTIVES: This paper reports a study of the water loss behaviour of two commercial glass-ionomer cements coated with varnishes. METHODS: For each cement (Fuji IX Fast or Chemflex), specimens (6mmdiameterx2mm depth) were prepared and cured for 10min at 37 degrees C. They were exposed to a desiccating environment over H(2)SO(4) either uncoated or coated with the appropriate varnish (Fuji Varnish, a solvent-based lacquer, or Fuji Coat, a light-cured varnish). Four specimens were prepared for each material. They were weighed at hourly intervals for 6h, daily for up to 5 days, then weekly thereafter until equilibration. RESULTS: Unlike the uncoated specimens, water loss from varnished cements was not Fickian, but followed the form: mass loss=A/t+B, where t is time, A and B are constants specific to each cement/varnish combination. A varied from 1.22 to 1.30 (mean 1.26, standard deviation 0.04), whereas B varied from 1.54 to 2.09 (mean -1.83, standard deviation 0.29). At equilibrium, varnished specimens lost much less water than unvarnished ones (p>0.01) but there was no significant difference between the solvent-based and the light-cured varnishes. SIGNIFICANCE: Varnishes protect immature glass-ionomer cements from drying out by altering the mechanism of water loss. This slows the rate of drying but does not necessarily change the total amount of water retained. It confirms that, in clinical use, glass-ionomer restoratives should be varnished to allow them to mature satisfactorily.
Resumo:
The water uptake and water loss behaviour in three different formulations of zinc oxy-chloride cement have been studied in detail. Specimens of each material were subjected to a high humidity atmosphere (93% RH) over saturated aqueous sodium sulfate, and a low humidity desiccating atmosphere over concentrated sulfuric acid. In high humidity, the cement formulated from the nominal 75% ZnCl2 solutions gained mass, eventually becoming too sticky to weigh further. The specimens at 25% and 50% ZnCl2 by contrast lost mass by a diffusion process, though by 1 week the 50% cement had stated to gain mass and was also too sticky to weigh. In low humidity, all three cements lost mass, again by a diffusion process. Both water gain and water loss followed Fick's law for a considerable time. In the case of water loss under desiccating conditions, this corresponded to values of Mt/MĄ well above 0.5. However, plots did not go through the origin, showing that there was an induction period before true diffusion began. Diffusion coefficients varied from 1.56 x 10-5 (75% ZnCl2) to 2.75 x 10-5 cm2/s (50% ZnCl2), and appeared to be influenced not simply by composition. The drying of the 25% and 50% ZnCl2 cements in high humidity conditions occurred at a much lower rate, with a value of D of 2.5 x 10-8 cm2/s for the 25% ZnCl2 cement. This cement was found to equilibrate slowly, but total water loss did not differ significantly from that of the cements stored under desiccating conditions. Equilibration times for water loss in desiccating conditions were of the order of 2-4 hours, depending on ZnCl2 content; equilibrium water losses were respectively 28.8 [25% ZnCl2], 16.2 [50%] and 12.4 [75%] which followed the order of ZnCl2 content. It is concluded that the water transport processes are strongly influenced by the ZnCl2 content of the cement.
Resumo:
Drug dissolution and release characteristics from freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose (CMC) have been investigated to determine the mechanisms of drug release from the two systems. The formulations were prepared by freeze-drying (wafers) or drying in air (films), the hydrated gel of the polymer containing paracetamol as a model soluble drug. Scanning electron microscopy (SEM) was used to examine differences between the physical structure of the wafers and films. Dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 242 nm. The effects of drug loading, polymer content and amount of glycerol (films) on the release characteristics of paracetamol were investigated. The release profiles of paracetamol from the wafers and films were also compared. A digital camera was used to observe the times to complete hydration and dissolution of the wafers containing different amounts of CMC and how that impacts on drug release rates. Both formulations showed sustained type drug release that was modelled by the Korsmeyer–Peppas equation. Changes in the concentration of drug and glycerol (films) did not significantly alter the rate of drug release while increasing polymer content significantly decreased the rate of drug release from both formulations. The results show that the rate of paracetamol release was faster from the wafers than the corresponding films due to differences in their physical structures. The wafers which formed a porous network, hydrated faster than the more dense and continuous, (non-porous) sheet-like structure of the films.
Resumo:
Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.
Resumo:
Tubers of five cultivars of potato were stored at 4 degreesC for 2 3 and 8 months and baked in a conventional oven The flavor compounds from the baked potato flesh were isolated by headspace adsorption onto Tenax and analyzed by gas chromatography-mass spectrometry On a quantitative basis compounds derived from lipid and Maillard reaction/sugar degradation dominated the flavor isolates with sulfur compounds, methoxypyrazines, and terpenes making smaller contributions Levels of 37 of the > 150 detected compounds were monitored in each cultivar with time of storage Many significant differences were found in levels of individual compounds compound classes and total monitored compounds for the individual effects of cultivar and storage time and for their two way interaction Differences may be explained by variations in levels of flavor precursors and activities of enzymes mediating flavor compound formation among cultivars and storage times In addition differences in agronomic conditions may partly account for variations among cultivars Overall of the compounds monitored those most likely having the greatest flavor impact were 2-isopropyl 3 methyoxypyrazine 2 isobutyl 3-methoxypyrazine dimethyl trisulfide, decanal and 3 methylbutanal, with methylpropanal, 2 methylbutanal methional, and nonanal also being probable important contributors to flavor.