974 resultados para Open-system Fractional Crystallization
Resumo:
The purpose of this investigation was to develop and implement a general purpose VLSI (Very Large Scale Integration) Test Module based on a FPGA (Field Programmable Gate Array) system to verify the mechanical behavior and performance of MEM sensors, with associated corrective capabilities; and to make use of the evolving System-C, a new open-source HDL (Hardware Description Language), for the design of the FPGA functional units. System-C is becoming widely accepted as a platform for modeling, simulating and implementing systems consisting of both hardware and software components. In this investigation, a Dual-Axis Accelerometer (ADXL202E) and a Temperature Sensor (TMP03) were used for the test module verification. Results of the test module measurement were analyzed for repeatability and reliability, and then compared to the sensor datasheet. Further study ideas were identified based on the study and results analysis. ASIC (Application Specific Integrated Circuit) design concepts were also being pursued.
Resumo:
In recent years, a surprising new phenomenon has emerged in which globally-distributed online communities collaborate to create useful and sophisticated computer software. These open source software groups are comprised of generally unaffiliated individuals and organizations who work in a seemingly chaotic fashion and who participate on a voluntary basis without direct financial incentive. ^ The purpose of this research is to investigate the relationship between the social network structure of these intriguing groups and their level of output and activity, where social network structure is defined as (1) closure or connectedness within the group, (2) bridging ties which extend outside of the group, and (3) leader centrality within the group. Based on well-tested theories of social capital and centrality in teams, propositions were formulated which suggest that social network structures associated with successful open source software project communities will exhibit high levels of bridging and moderate levels of closure and leader centrality. ^ The research setting was the SourceForge hosting organization and a study population of 143 project communities was identified. Independent variables included measures of closure and leader centrality defined over conversational ties, along with measures of bridging defined over membership ties. Dependent variables included source code commits and software releases for community output, and software downloads and project site page views for community activity. A cross-sectional study design was used and archival data were extracted and aggregated for the two-year period following the first release of project software. The resulting compiled variables were analyzed using multiple linear and quadratic regressions, controlling for group size and conversational volume. ^ Contrary to theory-based expectations, the surprising results showed that successful project groups exhibited low levels of closure and that the levels of bridging and leader centrality were not important factors of success. These findings suggest that the creation and use of open source software may represent a fundamentally new socio-technical development process which disrupts the team paradigm and which triggers the need for building new theories of collaborative development. These new theories could point towards the broader application of open source methods for the creation of knowledge-based products other than software. ^
Resumo:
Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.
Resumo:
Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the "fishbone", the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 μm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent "barcode" implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.