954 resultados para One-dimensional model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A criação de jacaré do Pantanal (Caiman crocodilus yacare) em cativeiro tem sido estimulada, e entre as técnicas de processamento de sua carne, a salga é um processo de conservação relativamente simples e de baixo custo. O objetivo deste trabalho foi estudar a cinética de difusão de cloreto de sódio em carne de jacaré do Pantanal criado em cativeiro, durante a salga úmida. Foram utilizados volumes limitados de salmoura e os experimentos foram realizados com relações salmoura/músculo de 3, 4 e 5, com concentrações de salmoura de 15%, 20% e 25% em peso e temperaturas de 10, 15 e 20ºC. A solução analítica da segunda lei de Fick, considerando difusão unidimensional em uma placa infinita em contato com uma solução bem agitada de volume limitado, foi utilizada para calcular os coeficientes de difusão efetivos de sal e estimar o conteúdo de cloreto de sódio nos filés. Obteve-se boa concordância entre o modelo analítico considerado e os dados experimentais. As difusividades do sal nos filés ocorreram na faixa de 0,47x10-10 a 9,62x10-10 m²/s.
Resumo:
Este trabalho abordou o resfriamento rápido com ar forçado de morango via simulação numérica. Para tanto, foi empregado o modelo matemático que descreve o processo de transferência de calor, com base na lei de Fourier, escrito em coordenadas esféricas e simplificado para descrever o processo unidimensional. A resolução da equação expressa pelo modelo matemático deu-se por meio da implementação de um algoritmo, fundamentado no esquema explícito do método numérico das diferenças finitas, executado no ambiente de computação científica MATLAB 6.1. A validação do modelo matemático foi realizada a partir da comparação de dados teóricos com dados obtidos num experimento, no qual morangos foram resfriados com ar forçado. Os resultados mostraram que esse tipo de investigação para a determinação do coeficiente de transferência de calor por convecção é promissora como ferramenta no suporte à decisão do uso ou desenvolvimento de equipamentos na área de resfriamento rápido de frutos esféricos com ar forçado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The (2 + 1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfies the condition R not-equal 30. A solution to this equation is explicitly exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink.
Resumo:
We investigate a dilute mixture of bosons and spin-polarized fermions in one dimension. With an attractive Bose-Fermi scattering length the ground state is a self-bound droplet, i.e., a Bose-Fermi bright soliton where the Bose and Fermi clouds are superimposed. We find that the quantum fluctuations stabilize the Bose-Fermi soliton such that the one-dimensional bright soliton exists for any finite attractive Bose-Fermi scattering length. We study density profile and collective excitations of the atomic bright soliton showing that they depend on the bosonic regime involved: mean-field or Tonks-Girardeau.
Resumo:
We discuss the interplay between electronic correlations and an underlying superlattice structure in determining the period of charge density waves (CDW's), by considering a one-dimensional Hubbard model with a repeated (nonrandom) pattern of repulsive (U > 0) and free (U=0) sites. Density matrix renormalization group diagonalization of finite systems (up to 120 sites) is used to calculate the charge-density correlation function and structure factor in the ground state. The modulation period can still be predicted through effective Fermi wave vectors k(F)(*) and densities, and we have found that it is much more sensitive to electron (or hole) doping, both because of the narrow range of densities needed to go from q(*)=0 to pi, but also due to sharp 2k(F)(*)-4k(F)(*) transitions; these features render CDW's more versatile for actual applications in heterostructures than in homogeneous systems.
Resumo:
In the quark model of the nucleon, the Fermi statistics of the elementary constituents can influence significantly the properties of multinucleon bound systems. In the Skyrme model, on the other hand, the basic quanta are bosons, so that qualitatively different statistics effects can be expected a priori. In order to illustrate this point, we construct schematic one-dimensional quark and soliton models which yield fermionic nucleons with identical baryon densities. We then compare the baryon densities of a two-nucleon bound state in both models. Whereas in the quark model the Pauli principle for quarks leads to a depletion of the density in the central region of the nucleus, the soliton model predicts a slight increase of the density in that region, due to the bosonic statistics of the meson-field quanta.
Resumo:
We study an exactly solvable two-dimensional model which mimics the basic features of the standard model. This model combines chiral coupling with an infrared behavior which resembles low energy QCD. This is done by adding a Podolsky higher-order derivative term in the gauge field to the Lagrangian of the usual chiral Schwinger model. We adopt a finite temperature regularization procedure in order to calculate the non-trivial fermionic Jacobian and obtain the photon and fermion propagators, first at zero temperature and then at finite temperature in the imaginary and real time formalisms. Both singular and non-singular cases, corresponding to the choice of the regularization parameter, are treated. In the nonsingular case there is a tachyonic mode as usual in a higher order derivative theory, however in the singular case there is no tachyonic excitation in the spectrum.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The nucleation and growth model, which is usually applied to switching phenomena, is adapted for explaining surface potential measurements on the P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) copolymer obtained in a constant current corona triode. It is shown that the growth is one-dimensional and that the nucleation rate is unimportant, probably because surface potential measurements take much longer than the switching ones. The surface potential data can therefore be accounted for by a growth model in which the velocity of growth varies exponentially with the electric field. Since hysteresis loops can be obtained from surface potential measurements, it is suggested that similar mechanisms can be used when treating switching and hysteresis phenomena, provided that account is taken of the difference in the time scale of the measurements.
Resumo:
This work presents a numerical model to simulate refrigerant flow through capillary tubes, commonly used as expansion devices in refrigeration systems. The capillary tube is considered straight and horizontal. The flow is taken as one-dimensional and adiabatic. Steady state and thermodynamic equilibrium conditions are assumed. The two-fluid model, involving four conservation equations and considering the hidrodynamic nonequilibrium between the liquid and vapor phases is applied to the flow region. The pressure profiles and the mass flow rates given by the model are compared with experimental data.
Resumo:
We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.