SURFACE PERTURBATIONS OF A SHALLOW VISCOUS-FLUID HEATED FROM BELOW AND THE (2+1)-DIMENSIONAL BURGERS-EQUATION


Autoria(s): Kraenkel, Roberto André; Pereira, J. G.; Manna, M. A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

15/01/1992

Resumo

The (2 + 1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfies the condition R not-equal 30. A solution to this equation is explicitly exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink.

Formato

838-841

Identificador

http://dx.doi.org/10.1103/PhysRevA.45.838

Physical Review A. College Pk: American Physical Soc, v. 45, n. 2, p. 838-841, 1992.

1050-2947

http://hdl.handle.net/11449/35397

10.1103/PhysRevA.45.838

WOS:A1992HB01900037

WOSA1992HB01900037.pdf

Idioma(s)

eng

Publicador

American Physical Soc

Relação

Physical Review A

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article