942 resultados para Numerical experiments
Resumo:
The module of a quadrilateral is a positive real number which divides quadrilaterals into conformal equivalence classes. This is an introductory text to the module of a quadrilateral with some historical background and some numerical aspects. This work discusses the following topics: 1. Preliminaries 2. The module of a quadrilateral 3. The Schwarz-Christoffel Mapping 4. Symmetry properties of the module 5. Computational results 6. Other numerical methods Appendices include: Numerical evaluation of the elliptic integrals of the first kind. Matlab programs and scripts and possible topics for future research. Numerical results section covers additive quadrilaterals and the module of a quadrilateral under the movement of one of its vertex.
Resumo:
Correlations of erosion resistances of materials tested in different equipment are reported. Analysis of the authors' data from rotating disk and venturi equipment indicates that there exists a good correlation between the erosion resistances of materials tested at different intensities. The study indicates that time effects on erosion are important in correlations of this type. The erosion resistances of materials tested in two different devices exhibit good correlations indicating a quantitative similarity between different forms of erosion. The investigations also show that the prediction of erosion resistances of materials in a field device may be made with the data from a laboratory device which may not fully reproduce the flow conditions in the field. These conclusions are also checked with data reported from other laboratories.
Resumo:
Ubiquitous computing is about making computers and computerized artefacts a pervasive part of our everyday lifes, bringing more and more activities into the realm of information. The computationalization, informationalization of everyday activities increases not only our reach, efficiency and capabilities but also the amount and kinds of data gathered about us and our activities. In this thesis, I explore how information systems can be constructed so that they handle this personal data in a reasonable manner. The thesis provides two kinds of results: on one hand, tools and methods for both the construction as well as the evaluation of ubiquitous and mobile systems---on the other hand an evaluation of the privacy aspects of a ubiquitous social awareness system. The work emphasises real-world experiments as the most important way to study privacy. Additionally, the state of current information systems as regards data protection is studied. The tools and methods in this thesis consist of three distinct contributions. An algorithm for locationing in cellular networks is proposed that does not require the location information to be revealed beyond the user's terminal. A prototyping platform for the creation of context-aware ubiquitous applications called ContextPhone is described and released as open source. Finally, a set of methodological findings for the use of smartphones in social scientific field research is reported. A central contribution of this thesis are the pragmatic tools that allow other researchers to carry out experiments. The evaluation of the ubiquitous social awareness application ContextContacts covers both the usage of the system in general as well as an analysis of privacy implications. The usage of the system is analyzed in the light of how users make inferences of others based on real-time contextual cues mediated by the system, based on several long-term field studies. The analysis of privacy implications draws together the social psychological theory of self-presentation and research in privacy for ubiquitous computing, deriving a set of design guidelines for such systems. The main findings from these studies can be summarized as follows: The fact that ubiquitous computing systems gather more data about users can be used to not only study the use of such systems in an effort to create better systems but in general to study phenomena previously unstudied, such as the dynamic change of social networks. Systems that let people create new ways of presenting themselves to others can be fun for the users---but the self-presentation requires several thoughtful design decisions that allow the manipulation of the image mediated by the system. Finally, the growing amount of computational resources available to the users can be used to allow them to use the data themselves, rather than just being passive subjects of data gathering.
Resumo:
An experimental and numerical study is presented to show the effect of cowl length and angle on the ramp/cowl shock interaction phenomena fora two-dimensional planar scramjet inlet model. Experiments areconducted in a hypersonic shock tunnel, at Mach 8, at four lengths of owl and three cowl angles. Investigations include schlieren flow Visualization near the cowl region and static pressure and heat transfer rate measurement inside the inlet chamber. Various ramp/cowl shock interaction processes resulted for different cowl configurations have been visualized using a high-speed camera. Edney type-II interference pattern is observed for 131 and 141-mm cowl lengths,whereas it is an Edney type-I interference pattern in case of a 151 mm cowl with all their typical features resulting because of the ramp/cowl shock interaction. Experiments with a cowl configuration other than 0deg show the flow to he established through the inlet because or the reduced contraction ratio. Heat transfer peaks can be observed for the10 and 20-deg cowl cases where flow through the inlet is found to be established. These may serve as the possible locations of fuel injection.
Resumo:
A theorem termed the Geometrical Continuity Theorem is enunciated and proven. This theorem throws light on the aspects of the continuity of the proportional portion with the base weir portion. These two portions constitute the profile of a proportional weir. A weir of this type with circular bottom is designed. The theorem is used to establish the continuity at the junction of the proportional and the base weir portions of this weir. The coordinates of the weir profile are obtained by numerical methods and are furnished in tabular form for ready use by designers. The discharge passing through the weir is a linear function of the head. The verification of the assumed linear discharge-head relation is furnished for one of the three weirs with which experiments were conducted. The coefficient of discharge for this typical weir is found to be a constant with a value of 0.59.
Resumo:
The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.
Resumo:
Airport runway pavement always subjected to huge impact loading due to the hard landing of aircraft on the pavement surface. Therefore runway pavements should have sufficient impact resistance capability to avoid damage causing by hard impact like surface deflection in downward or penetration since the repair works is cumbersome within the operating condition of airport and also increases the service life cost of the pavement structure. Several research works have been carried out on airport runway pavement to measure the present condition of pavement and also to predict future performance of it. However, most of the works are confined by pavement response under moving aircraft loading. Nevertheless, no comprehensive research work is yet conducted to identify the controlling factors which might have significant effect in changing the common pavements damage like surface penetration depth under impact of aircraft. Therefore, a 3D FE study is conducted to determine some effective factors in controlling the top surface penetration depth of runway pavement. Among the exterior factors, mass of the impactor, velocity of the impactor, impact angle and boundary conditions are selected and as interior factors, thickness of the runway pavement, compressive strength and density of materials used in the runway pavement are selected.
Resumo:
A numerical method is suggested for separation of stresses in photo-orthotropic elasticity using the numerical solution of compatibility equation for orthotropic case. The compatibility equation is written in terms of a stress parameter S analogous to the sum of principal stresses in two-dimensional isotropic case. The solution of this equation provides a relation between the normal stresses. The photoelastic data give the shear stress and another relation between the two normal stresses. The accuracy of the numerical method and its application to practical problems are illustrated with examples.
Resumo:
A module containing all the functional components required for a digital absolute positioning process of one axis of a machine tool has been designed and constructed. Circuit realization makes use of integrated circuit elements.
Resumo:
The finite-difference form of the basic conservation equations in laminar film boiling have been solved by the false-transient method. By a judicious choice of the coordinate system the vapour-liquid interface is fitted to the grid system. Central differencing is used for diffusion terms, upwind differencing for convection terms, and explicit differencing for transient terms. Since an explicit method is used the time step used in the false-transient method is constrained by numerical instability. In the present problem the limits on the time step are imposed by conditions in the vapour region. On the other hand the rate of convergence of finite-difference equations is dependent on the conditions in the liquid region. The rate of convergence was accelerated by using the over-relaxation technique in the liquid region. The results obtained compare well with previous work and experimental data available in the literature.
Resumo:
Investigations have been carried out of some aspects of the fine-scale structure of turbulence in grid flows, in boundary layers in a zero pressure gradient and in a boundary layer in a strong favourable pressure gradient leading to relaminarization. Using a narrow-band filter with suitable mid-band frequencies, the properties of the fine-scale structure (appearing as high frequency pulses in the filtered signal) were analysed using the variable discriminator level technique employed earlier by Rao, Narasimha & Badri Narayanan (1971). It was found that, irrespective of the type of flow, the characteristic pulse frequency (say Np) defined by Rao et al. was about 0·6 times the frequency of the zero crossings. It was also found that, over the small range of Reynolds numbers tested, the ratio of the width of the fine-scale regions to the Kolmogorov scale increased linearly with Reynolds number in grid turbulence as well as in flat-plate boundarylayer flow. Nearly lognormal distributions were exhibited by this ratio as well as by the interval between successive zero crossings. The values of Np and of the zero-crossing rate were found to be nearly constant across the boundary layer, except towards its outer edge and very near the wall. In the zero-pressure-gradient boundary-layer flow, very near the wall the high frequency pulses were found to occur mostly when the longitudinal velocity fluctuation u was positive (i.e. above the mean), whereas in the outer part of the boundary layer the pulses more often occurred when u was negative. During acceleration this correlation between the fine-scale motion and the sign of u was less marked.
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.