997 resultados para Nuclear Polyhedrosis-virus
Resumo:
The development of dengue viruses type 1 obtained from accute human sera and inoculated into mosquito cell cultures, was observed by standard transmission electron microscopy and cytochemical staining. It follows the trans-type mechanism already estabilished of other dengue types. Directed passage of single virus particles across the cell membrane seems to be a pathway of entry and exit in dengue-1 infected cells. The nature of numerous electron translucent vesicles and tubules, produced simmultaneously during virus replication inside the rough endoplasmic reticulum, was analyzed by cytochemical tests. The largest amount of virus particles was produced inside cell syncytia.
Resumo:
Immunofluorescence and immunoperoxidase test directed against early viral antigens, and DNA-DNA hybridization were compared with viral isolation for their abilities to detect Cytomegalovirus (CVM) in the urine of 89 HIV infected patients. From the 100 urine samples collected, 70 were found positive by at least one method. Considering viral isolation as the "gold standard" technique, immunofluorescence and immunoperoxidase had a sensitivity of 92.3% and88% respectively, with a specificity in both cases of 95%. DNA-DNA hybridization showed a sensitivity of 90% but with lower (60%) specificity. All of the three assays were effective in detecting CVM from urine and the technical advantage of each is discussed.
Resumo:
The present report describes an alternative method for in vitro detection of HIV-1 -specific antibody secretion in 24h of culture employing as stimulant of peripheral blood mononuclear cells the disrupted inactivated whole virus adsorbed onto microwells in a commercial ELISA kit plates. The results obtained from this technique have showed high sensitivity and specificity since it was capable of detecting HIV-1 infection early after birth. There were neither false-positivity nor false-negativity when blood samples obtained from HIV-1 seronegative asymptomatic individuals, and HIV-1 seropositive adult patients were analized. This rapid, low cost, simple, highly sensitive and specific assay can be extremely useful for early diagnosis of pediatric HIV infection.
Resumo:
The crocidurine shrews include the most speciose genus of mammals, Crocidura. The origin and evolution of their radiation is, however, poorly understood because of very scant fossil records and a rather conservative external morphology between species. Here, we use an alignment of 3560 base pairs of mitochondrial and nuclear DNA to generate a phylogenetic hypothesis for the evolution of Old World shrews of the subfamily Crocidurinae. These molecular data confirm the monophyly of the speciose African and Eurasian Crocidura, which also includes the fossorial, monotypic genus Diplomesodon. The phylogenetic reconstructions give further credit to a paraphyletic position of Suncus shrews, which are placed into at least two independent clades (one in Africa and sister to Sylvisorex and one in Eurasia), at the base of the Crocidura radiation. Therefore, we recommend restricting the genus Suncus to the Palaearctic and Oriental taxa, and to consider all the African Suncus as Sylvisorex. Using molecular dating and biogeographic reconstruction analyses, we suggest a Palaearctic-Oriental origin for Crocidura dating back to the Upper Miocene (6.8 million years ago) and several subsequent colonisations of the Afrotropical region by independent lineages of Crocidura.
Resumo:
Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.
Resumo:
Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH2-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.
Resumo:
During the 1981 dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) Cuban epidemic, bronchial asthma (BA) was frequently found as a personal or family antecedent in dengue hemorragic fever patients. Considering that antibody dependent enhancement (ADE) plays an important role in the etiopathogenic mechanism of DHF/DSS, we decide to study the Dengue 2 virus (D2V) capability of replication in peripheral blood leukocytes (PBL) from asthmatic patients and healthy persons. In 90% of asthmatic patients and 53.8% of control group it was obtained PBL with a significant D2V enhancing activity (X² p < 0.01). Power enhancement was higher in asthmatic group. This is the first in vitro study relating BA and the dengue 2 virus immuno enhancement. The results obtained support the role of BA as a risk factor for DHF/DSS as already described on epidemiological data.
Resumo:
We have previously demonstrated that the bZIP transcription factor CREB-2, also called ATF-4, trans-activates, in association with the viral protein Tax, the human T-cell leukemia virus type I (HTLV-I) promoter. In this study, we have examined whether CREB-2 acetylation affects transcriptional activation mediated by Tax. We present evidence that CREB-2 is acetylated in vitro and in vivo. CREB-2 is acetylated in two regions: the basic domain of the bZIP (from amino acid residue 270 to 300) and the short basic domain (from 342 to 351) located downstream from the bZIP. We also demonstrate that CREB-2 is acetylated by p300/CBP but not by p/CAF. Moreover, replacement of lysine by arginine in the basic domains decreases the trans-activating capacity of CREB-2. However, in the presence of Tax, the HTLV-I transcription remains fully activated by these CREB-2 mutants. Although we cannot totally exclude that the mutations could also affect CREB-2 structure and activity independent of acetylation, our results suggest that activation of the viral promoter in the presence of Tax is independent of the CREB-2 acetylation.
Resumo:
The authors devised a cytotoxic assay based on cytofluorometric analysis of target surface markers in order to compare lysis exerted in vitro by cytotoxic T lymphocytes (CTLs) on different cell subsets in the context of a single lymphoid target cell population. Using this assay, the authors evaluated when oncorna virus-infected lymphocytes become a suitable target for virus-specific T cell effectors. A lymphocyte population from Moloney-murine leukaemia virus (M-MuLV)-infected (carrier) mice, in which the proliferation of selective V beta T-cell receptor (TCR) families was induced in response to Mlsa encoded antigens, was utilized as a target. The authors observed that a virus-specific T cell clone exerted lytic activity preferentially against activated cell subsets. Moreover, virus-specific CTLs generated in mixed leucocyte tumour cell cultures (MLTC) were also able to impair the concomitant anti-Mlsa response of lymphocytes from M-MuLV carrier mice. It was found that the proliferative status of oncorna virus-infected target cells played an important role in limiting the in vitro efficacy of the immune response, and it is speculated that this phenomenon might represent an in vivo escape mechanism from immunosurveillance.
Resumo:
SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.
Resumo:
BACKGROUND: Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. RESULTS: Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP) into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependent manner. More than 90% of transduced cells were small and medium sized neurons (< 700 microm 2), predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (approximately 60%) and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non-nociceptive cell types. CONCLUSION: We have found that rAAV2/6 is an efficient vector to deliver transgenes to nociceptive neurons in mice. Furthermore, the characterization of the transduction profile may facilitate gene transfer studies to dissect mechanisms behind neuropathic pain.
Resumo:
Background and Aims: IL28B polymorphisms, interferon (IFN)-gamma inducible protein-10 (IP-10) levels and the homeostasis model assessment of insulin resistance (HOMA-IR) score have been reported to predict rapid (RVR) and sustained (SVR) virological response in chronic hepatitis C (CHC), but it is not known whether these factors represent independent, clinically useful predictors. The aim of the study was to assess factors (including IL28B polymorphisms, IP-10 levels and HOMA-IR score) independently predicting response to therapy in CHC under real life conditions.Methods: Multivariate analysis of factors predicting RVR and SVR in 280 consecutive, treatment-naive CHC patients treated with pegylated IFN alpha and ribavirin in a prospective multicenter study.Results: Independent predictors of RVR were HCV RNA < 400,000 IU/ml (OR11.37; 95% CI 3.03-42.6), rs12980275 AA (vs. AG/GG) (OR 7.09; 1.97-25.56) and IP-10 (OR 0.04; 0.003-0.56) in HCV genotype 1 patients and lower baseline γ-glutamyl-transferase levels (OR = 0.02; 0.0009-0.31) in HCV genotype 3 patients. Independent predictors of SVR were rs12980275 AA (OR 9.68; 3.44-27.18), age < 40 yrs (OR = 4.79; 1.50-15.34) and HCV RNA < 400,000 IU/ml (OR 2.74; 1.03-7.27) in HCV genotype 1 patients and rs12980275 AA (OR = 6.26; 1.98-19.74) and age < 40 yrs (OR 5.37; 1.54-18.75) in the 88 HCV genotype 1 patients without a RVR. RVR was by itself predictive of SVR in HCV genotype 1 patients (32 of 33, 97%; OR 33.0; 4.06-268.32) and the only independent predictor of SVR in HCV genotype 2 (OR 9.0, 1.72-46.99; p=0.009) or 3 patients (OR 7.8, 1.43-42.67; p=0.01).Conclusions: In HCV genotype 1 patients, IL28B polymorphisms, HCV RNA load and IP-10 independently predict RVR. The combination of IL28B polymorphisms, HCV RNA level and age may yield more accurate pretreatment prediction of SVR. HOMA-IR score is not associated with viral response.