893 resultados para Non-Contact Atomic Force Microscopy, Molecular Self-Assembly, Insulator, Calcite, Chirality
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polycrystalline SrBi2Nb2O9-layered ferroelectric thin films were synthesized on Pt/Ti/SiO2/Si substrate using the polymeric precursors solution. The dip-coated films were specular and crack-free and crystallized during firing at 700 °C. Single-, double-, and triple-layered films were obtained by several dips in the deposition solution, and the influence of crystallization between each dip was studied. Microstructure and morphological evaluation were followed by grazing incident x-ray diffraction (GIXRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Multilayered films obtained using the intermediate-crystallized layer route present a dense microstructure with spherical grains, with a preferential orientation in the 〈215〉 direction; films obtained using the intermediate-amorphous layer route are polycrystalline and present elongated grains around 250 nm in size.
Resumo:
Ferroelectric barium titanate thin films were produced by the polymeric precursor method. In this technique, the desired metal cations are chelated in a solution using a hydroxycarboxylic acid as the chelating agent. Barium carbonate and titanium IV isopropoxide were used as precursors for the citrate solution. Ethylene glycol and citric acid were used as polymerization/complexation agents for the process. The crystalline structure of the film annealed at 700 °C had a single perovskite phase with a tetragonal structure. The BaTiO3 film showed good P-E hysteresis loops and C-V characteristics due to the switched ferroelectric domains.
Resumo:
Lead lanthanum zirconate titanate (PLZT) thin films with (9/65/35) stoichiometry were prepared by dip coating from polymeric precursor method. The films deposited on silicon (100) substrates, were thermally treated from 450° to 700°C for 6 hours in order to study the influence of thermal treatment on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction results showed that PLZT phase crystallizes at low temperature (500°C) and present preferential orientation. It was observed by scanning electron microscopy (SEM) that it is possible to obtain dense thin films at temperatures around 650°C. The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by the annealing temperature.
Resumo:
Composites produced during the in situ chemical polymerization of aniline on top of a poly(ethylene terephthalate) (PET) film, in different conditions, were studied by open-circuit potential (Voc), ultraviolet-visible, and infrared spectroscopy, electrical conductivity measurements, scanning electron microscopy, and atomic force microscopy. The polymerization monitoring by Voc showed a maximum associated with the intermediate pernigraniline oxidation state and a final formation of polyaniline (PANI) in the doped emeraldine salt (ES) form. Furthermore, high electrical conductivity values were obtained for the PANI-ES coating prepared under selected conditions. A globular formation was observed for the doped PANI-ES coating with globules of sizes of the same order and same shape of the PET, demonstrating the influence of the substrate on the coating morphology.
Resumo:
Lithium niobate (LiNbO3) thin films with 1/1 stoichiometry were prepared by a spin-coating from polymeric precursor method. The films deposited on silicon (100) substrates, were thermally treated from 400° to 600°C for 3 hours in order to study the influence of thermal treatment on the crystallinity, microstructure, grain size and roughness. X-ray diffraction (XRD) results showed that LiNbO3 phase crystallizes at low temperature (400°C). It was observed by scanning electron microscopy (SEM) that it is possible to obtain dense thin films at temperatures around 500°C. The atomic force microscopy (AFM) results showed that the grain size and roughness are strongly influenced by the annealing temperature.