1000 resultados para Neolític -- Models matemàtics
Bayesian parameter identification in dynamic state space models using modified measurement equations
Resumo:
When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Eleven general circulation models/global climate models (GCMs) - BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1 - are evaluated for Indian climate conditions using the performance indicator, skill score (SS). Two climate variables, temperature T (at three levels, i.e. 500, 700, 850 mb) and precipitation rate (Pr) are considered resulting in four SS-based evaluation criteria (T500, T700, T850, Pr). The multicriterion decision-making method, technique for order preference by similarity to an ideal solution, is applied to rank 11 GCMs. Efforts are made to rank GCMs for the Upper Malaprabha catchment and two river basins, namely, Krishna and Mahanadi (covered by 17 and 15 grids of size 2.5 degrees x 2.5 degrees, respectively). Similar efforts are also made for India (covered by 73 grid points of size 2.5 degrees x 2.5 degrees) for which an ensemble of GFDL2.0, INGV-ECHAM4, UKMO-HADCM3, MIROC3, BCCR-BCCM2.0 and GFDL2.1 is found to be suitable. It is concluded that the proposed methodology can be applied to similar situations with ease.
Resumo:
Retransmission protocols such as HDLC and TCP are designed to ensure reliable communication over noisy channels (i.e., channels that can corrupt messages). Thakkar et al. 15] have recently presented an algorithmic verification technique for deterministic streaming string transducer (DSST) models of such protocols. The verification problem is posed as equivalence checking between the specification and protocol DSSTs. In this paper, we argue that more general models need to be obtained using non-deterministic streaming string transducers (NSSTs). However, equivalence checking is undecidable for NSSTs. We present two classes where the models belong to a sub-class of NSSTs for which it is decidable. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Early afterdepolarizations (EADs), which are abnormal oscillations of the membrane potential at the plateau phase of an action potential, are implicated in the development of cardiac arrhythmias like Torsade de Pointes. We carry out extensive numerical simulations of the TP06 and ORd mathematical models for human ventricular cells with EADs. We investigate the different regimes in both these models, namely, the parameter regimes where they exhibit (1) a normal action potential (AP) with no EADs, (2) an AP with EADs, and (3) an AP with EADs that does not go back to the resting potential. We also study the dependence of EADs on the rate of at which we pace a cell, with the specific goal of elucidating EADs that are induced by slow or fast rate pacing. In our simulations in two-and three-dimensional domains, in the presence of EADs, we find the following wave types: (A) waves driven by the fast sodium current and the L-type calcium current (Na-Ca-mediated waves); (B) waves driven only by the L-type calcium current (Ca-mediated waves); (C) phase waves, which are pseudo-travelling waves. Furthermore, we compare the wave patterns of the various wave-types (Na-Ca-mediated, Ca-mediated, and phase waves) in both these models. We find that the two models produce qualitatively similar results in terms of exhibiting Na-Ca-mediated wave patterns that are more chaotic than those for the Ca-mediated and phase waves. However, there are quantitative differences in the wave patterns of each wave type. The Na-Ca-mediated waves in the ORd model show short-lived spirals but the TP06 model does not. The TP06 model supports more Ca-mediated spirals than those in the ORd model, and the TP06 model exhibits more phase-wave patterns than does the ORd model.
Resumo:
This paper presents a comprehensive and robust strategy for the estimation of battery model parameters from noise corrupted data. The deficiencies of the existing methods for parameter estimation are studied and the proposed parameter estimation strategy improves on earlier methods by working optimally for low as well as high discharge currents, providing accurate estimates even under high levels of noise, and with a wide range of initial values. Testing on different data sets confirms the performance of the proposed parameter estimation strategy.
Resumo:
Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.
Resumo:
We study the dynamical behaviors of two types of spiral-and scroll-wave turbulence states, respectively, in two-dimensional (2D) and three-dimensional (3D) mathematical models, of human, ventricular, myocyte cells that are attached to randomly distributed interstitial fibroblasts; these turbulence states are promoted by (a) the steep slope of the action-potential-duration-restitution (APDR) plot or (b) early afterdepolarizations (EADs). Our single-cell study shows that (1) the myocyte-fibroblast (MF) coupling G(j) and (2) the number N-f of fibroblasts in an MF unit lower the steepness of the APDR slope and eliminate the EAD behaviors of myocytes; we explore the pacing dependence of such EAD suppression. In our 2D simulations, we observe that a spiral-turbulence (ST) state evolves into a state with a single, rotating spiral (RS) if either (a) G(j) is large or (b) the maximum possible number of fibroblasts per myocyte N-f(max) is large. We also observe that the minimum value of G(j), for the transition from the ST to the RS state, decreases as N-f(max) increases. We find that, for the steep-APDR-induced ST state, once the MF coupling suppresses ST, the rotation period of a spiral in the RS state increases as (1) G(j) increases, with fixed N-f(max), and (2) N-f(max) increases, with fixed G(j). We obtain the boundary between ST and RS stability regions in the N-f(max)-G(j) plane. In particular, for low values of N-f(max), the value of G(j), at the ST-RS boundary, depends on the realization of the randomly distributed fibroblasts; this dependence decreases as N-f(max) increases. Our 3D studies show a similar transition from scroll-wave turbulence to a single, rotating, scroll-wave state because of the MF coupling. We examine the experimental implications of our study and propose that the suppression (a) of the steep slope of the APDR or (b) EADs can eliminate spiral-and scroll-wave turbulence in heterogeneous cardiac tissue, which has randomly distributed fibroblasts.
Resumo:
The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.
Resumo:
The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Northeast India and its adjoining areas are characterized by very high seismic activity. According to the Indian seismic code, the region falls under seismic zone V, which represents the highest seismic-hazard level in the country. This region has experienced a number of great earthquakes, such as the Assam (1950) and Shillong (1897) earthquakes, that caused huge devastation in the entire northeast and adjacent areas by flooding, landslides, liquefaction, and damage to roads and buildings. In this study, an attempt has been made to find the probability of occurrence of a major earthquake (M-w > 6) in this region using an updated earthquake catalog collected from different sources. Thereafter, dividing the catalog into six different seismic regions based on different tectonic features and seismogenic factors, the probability of occurrences was estimated using three models: the lognormal, Weibull, and gamma distributions. We calculated the logarithmic probability of the likelihood function (ln L) for all six regions and the entire northeast for all three stochastic models. A higher value of ln L suggests a better model, and a lower value shows a worse model. The results show different model suits for different seismic zones, but the majority follows lognormal, which is better for forecasting magnitude size. According to the results, Weibull shows the highest conditional probabilities among the three models for small as well as large elapsed time T and time intervals t, whereas the lognormal model shows the lowest and the gamma model shows intermediate probabilities. Only for elapsed time T = 0, the lognormal model shows the highest conditional probabilities among the three models at a smaller time interval (t = 3-15 yrs). The opposite result is observed at larger time intervals (t = 15-25 yrs), which show the highest probabilities for the Weibull model. However, based on this study, the IndoBurma Range and Eastern Himalaya show a high probability of occurrence in the 5 yr period 2012-2017 with >90% probability.
Resumo:
Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.
Resumo:
This paper intends to provide an overview of the rich legacy of models and theories that have emerged in the last fifty years of the relatively young discipline of design research, and identifies some of the major areas of further research. It addresses the following questions: What are the major theories and models of design? How are design theory and model defined, and what is their purpose? What are the criteria they must satisfy to be considered a design theory or model? How should a theory or model of design be evaluated or validated? What are the major directions for further research?
Resumo:
Eleven coupled model intercomparison project 3 based global climate models are evaluated for the case study of Upper Malaprabha catchment, India for precipitation rate. Correlation coefficient, normalised root mean square deviation, and skill score are considered as performance indicators for evaluation in fuzzy environment and assumed to have equal impact on the global climate models. Fuzzy technique for order preference by similarity to an ideal solution is used to rank global climate models. Top three positions are occupied by MIROC3, GFDL2.1 and GISS with relative closeness of 0.7867, 0.7070, and 0.7068. IPSL-CM4, NCAR-PCMI occupied the tenth and eleventh positions with relative closeness of 0.4959 and 0.4562.
Resumo:
The solubilities of two lipid derivatives, geranyl butyrate and 10-undecen-1-ol, in SCCO2 (supercritical carbon dioxide) were measured at different operating conditions of temperature (308.15 to 333.15 K) and pressure (10 to 18 MPa). The solubilities (in mole fraction) ranged from 2.1 x 10(-3) to 23.2 x 10(-3) for geranyl butyrate and 2.2 x 10(-3) to 25.0 x 10(-3) for 10-undecen-1-ol, respectively. The solubility data showed a retrograde behavior in the pressure and temperature range investigated. Various combinations of association and solution theory along with different activity coefficient models were developed. The experimental data for the solubilities of 21 liquid solutes along with geranyl butyrate and 10-undecen-1-ol were correlated using both the newly derived models and the existing models. The average deviation of the correlation of the new models was below 15%.