993 resultados para NUCLEAR TEMPERATURE
Resumo:
THE study of swirling boundary layers is of considerable importance in many rotodynamic machines such as rockets, jet engines, swirl generators, swirl atomizers, arc heaters, etc. For example, the introduction of swirl in a flow acceleration device such as a nozzle in a rocket engine promises efficient mass flow control. In nuclear rockets, swirl is used to retain the uranium atoms in the rocket chamber. With these applications in mind, Back1 and Muthanna and Nath2 have obtained the similarity solutions for a low-speed three-dimensional steady laminar compressible boundary layer with swirl inside an axisymmetric surface of variable cross section. The aim of the present analysis is to study the effect of massive blowing rates on the unsteady laminar swirling compressible boundary-layer flow of an axisymmetric body of arbitrary cross section when the freestream velocity and blowing rate vary with time. The type of swirl considered here is that of a free vortex superimposed on the longitudinal flow of a compressible fluid with variable properties. The analysis is applicable to external flow over a body as well as internal flow along a surface. For the case of external flow, strong blowing can have significant use in cooling the surface of hypervelocity vehicles, particularly when ablation occurs under large aerodynamic or radiative heating, but there may not be such an important application of strong blowing in the case of internal flow. The governing partial differential equations have been solved numerically using an implicit finite difference scheme with a quasilinearization technique.3 High temperature gas effects, such as radiation, dissociation, and ionization, etc., are not investigated. The nomenclature is usually that of Ref. 4 and is listed in the full paper.
Resumo:
The two low-temperature phase transitions in dicalcium barium propionate have been investigated by H-1 NMR relaxation (T-1,T-2,T-1 rho) studies carried out at a Larmor frequency of 300 MHz. The T-1 and T-1 rho results indicate the presence of C2H5 dynamics near these two transitions. We infer from the T-1 rho results that the slow motions of the C2H5 groups are responsible for the II-III transition.
Resumo:
We present a comprehensive study of magnetoresistance (MR) of the crystalline pseudobinary ?-phase Fe alloy series FexNi80-xCr20 (50?x?66). This alloy series shows exotic magnetic phases as the composition (x) is varied. It has a critical composition for ferromagnetism at x=xc?59�60. MR was measured in the temperature range 1.7�110 K and up to a field of 7 T. The observed MR was small and the change was ?1%. The temperature dependence of MR was found to contain a positive and a negative contribution. The positive term was found to be ?H2 and it dominates at high field and high temperatures. We explain this as a manifestation of Kohler�s rule. The negative MR was found to have a quadratic dependence on magnetization M. The magnitude of the negative MR reaches a maximum as x?xc.
Resumo:
Donor-doped n-BaTiO3 polycrystalline ceramics show a strong negative temperature coefficient of resistivity below the orthorhombic-rhombohedral phase transition point, from 10(2-3) Omega cm af 190 K to 10(10-13) Omega cm at less than or similar to 50 K, with thermal coefficient of resistance alpha = 20-23% K-1. Stable thermal sensors for low-temperature applications are realized therefrom. The negative temperature coefficient of resistivity region can be modified by substituting isovalent ions in the lattice. Highly nonlinear current-voltage (I-V) curves are observed at low temperatures, with a voltage maximum followed by the negative differential resistance. The I-V curves are sensitive to dissipation so that cryogenic sensors can be fabricated for liquid level control, flow rate monitoring, radiation detection or in-rush voltage limitation.
Resumo:
The nature of the phase transitions of Bi2MoO6 has been investigated by the combined use of X-ray diffraction and Xray absorption spectroscopy. The distorted MoO6 octahedra in the low-temperature form are shown to undergo further distortion in the intermediate-temperature form before transforming to MoO4 tetrahedra in the high-temperature phase. (C) 1995 Academic Press, Inc.
Resumo:
Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr2O4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the 111] direction with a theory based on an exchange-striction mechanism leads to an estimate of the strength of the magnetoelastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction is discussed.
Resumo:
In this paper, the critical budding temperature of single-walled carbon nanotubes (SWCNTs), which are embedded in one-parameter elastic medium (Winkler foundation) is estimated under the umbrella of continuum mechanics theory. Nonlocal continuum theory is incorporated into Timoshenko beam model and the governing differential equations of motion are derived. An explicit expression for the non-dimensional critical buckling temperature is also derived in this work. The effect of the nonlocal small scale coefficient, the Winkler foundation parameter and the ratio of the length to the diameter on the critical buckling temperature is investigated in detail. It can be observed that the effects of nonlocal small scale parameter and the Winkler foundation parameter are significant and should be considered for thermal analysis of SWCNTs. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of embedded single-walled carbon nanotubes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Atomistic simulation of Ag, Al, Au, Cu, Ni, Pd, and Pt FCC metallic nanowires show a universal FCC -> HCP phase transformation below a critical cross-sectional size, which is reported for the first time in this paper. The newly observed HCP structure is also confirmed from previous experimental results. Above the critical cross-sectional size, initial < 100 >/{100} FCC metallic nanowires are found to be metastable. External thermal heating shows the transformation of metastable < 100 >/{100} FCC nanowires into < 110 >/{111} stable configuration. Size dependent metastability/instability is also correlated with initial residual stresses of the nanowire by use of molecular static simulation using the conjugant gradient method at a temperature of 0 K. It is found that a smaller cross-sectional dimension of an initial FCC nanowire shows instability due to higher initial residual stresses, and the nanowire is transformed into the novel HCP structure. The initial residual stress shows reduction with an increase in the cross-sectional size of the nanowires. A size dependent critical temperature is also reported for metastable FCC nanowires using molecular dynamic, to capture the < 110 >/{111} to < 100 >/{100} shape memory and pseudoelasticity.
Resumo:
Limiting ionic conductance (Lambda(0)) of rigid symmetrical unipositive ions in aqueous solution shows a strong temperature dependence. For example, Lambda(0) more than doubles when the temperature is increased from 283 to 318 K. A marked variation also occurs when the solvent is changed from ordinary water (H2O) to heavy water (D2O). In addition, Lambda(0) shows a nonmonotonic size dependence with a skewed maximum near Cs+. Although these important results have been known for a long time, no satisfactory theoretical explanation exists for these results. In this article we present a simple molecular theory which provides a nearly quantitative explanation in terms of microscopic structure and dynamics of the solvent. A notable feature of this theory is that it does not invoke any nonquantifiable models involving solvent-berg or clatherates. We find the strong temperature dependence of Lambda(0) to arise from a rather large number of microscopic factors, each providing a small but nontrivial contribution, but all acting surprisingly in the same direction. This work, we believe, provides, for the first time, a satisfactory explanation of both the anomalous size and temperature dependencies of Lambda(0) of unipositive ions in molecular terms. The marked change in Lambda(0) as the solvent is changed from H2O to D2O is found to arise partly from a change in the dielectric relaxation and partly from a change in the effective interaction of the ion with the solvent.
Resumo:
Synthesis and the thermal decomposition behavior of new molecular precursors, strontium, and calcium zirconyl citrates are presented. The pathway to the metazirconate formation has been found to proceed through a multistep process. The precursors yield SrZrO3 and CaZrO3 fine powders at temperatures as low as 650 degrees C. Physico-chemical, spectroscopic, thermoanalytical, and microscopic techniques have enabled the identification of the sequence of events leading to the perovskite formation and proposition of a thermolysis scheme. Retention of the molecular level mixing of the metal ions during the course of the precursor decomposition is supported by these techniques. Prior to the formation of MZrO3 (M = Sr and Ca) an ionic oxycarbonate, M2Zr2O5CO3 (M = SI. and Ca), intermediate is produced by the thermal decomposition of the citrate precursors.
Resumo:
Ca-doped manganite La1-xCaxMnO3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior.
Resumo:
Sufficiently long molecular dynamics simulations have been carried out on spherical monatomic sorbates in NaY zeolite, interacting via simple Lennard-Jones potentials, to investigate the dependence of the levitation effect on the temperature. Simulations carried out in the range 100-300 K suggest that the anomalous peak in the diffusion coefficient (observed when the levitation parameter, gamma, is near unity) decreases in intensity with increase in temperature. The rate of cage-to-cage migrations also exhibits a similar trend. The activation energy obtained from Arrhenius plots is found to exhibit a minimum when the diffusion coefficient is a maximum, corresponding to the gamma approximate to 1 sorbate diameter. In the linear or normal regime, the activation energy increases with increase in sorbate diameter until it shows a sharp decrease in the anomalous regime. Locations and energies of the adsorption sites and their dependence on the sorbate size gives interesting insight into the nature of the underlying potential-energy surface and further explain the observed trend in the activation energy with sorbate size. Cage residence times, tau(c), show little or no change with temperature for the sorbate with diameter corresponding to gamma approximate to 1, whereas there is a significant decrease in tau(c) with increase in temperature for sorbates in the linear regime. The implications of the present study for the separation of mixtures of sorbates are discussed.
Resumo:
We have studied the temperature dependence of the photoemission spectra of La1-xSrxMnO3 (x=0.0, 0.2, and 0.4) and found that the spectral line shape dramatically changes in the entire valence-band region, particularly for x=0.2 and 0.4. By contrast, the spectra of La0.6Sr0.4CoO3 show no significant temperature dependence. From comparison between the temperature-and composition-(x) dependent spectral changes and the temperature-composition phase diagram of La1-xSrxMnO3, we suggest that the changes are related to the degree of hole localization on oxygen p orbitals, which is influenced by electron-lattice coupling and magnetic correlations.
Resumo:
The present investigation analyses the thermodynamic behaviour of the surfaces and adsorption as a function of temperature and composition in the Fe-S-O melts based on the Butler's equations. The calculated-values of the surface tensions exhibit an elevation or depression depending on the type of the added solute at a concentration which coincides with that already present in the system. Generally, the desorption of the solutes as a function of temperature results in an initial increase followed by a decrease in the values of the surface tension. The observations are analyzed based on the surface interaction parameters which are derived in the present research.