987 resultados para NONEQUILIBRIUM CRITICAL PHENOMENA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tese versa sobre as grandes questões relativas à contracepção no Brasil. Integra um esforço por analisar condutas referentes à contracepção, segundo lógicas que priorizam a situacionalidade e a relacionalidade de tais fenômenos. As estratégias para gerir a fecundidade são constitutivas da sexualidade heterossexual. Mulheres e homens podem usar ou não contracepção; as razões dessa conduta extrapolam aspectos concernentes a informação e acesso. Busca-se compreender as práticas contraceptivas a partir do processo do aprendizado das lógicas relacionais e de gênero, em diferentes momentos dos percursos biográficos: o início da trajetória afetivo-sexual, os contextos de irrupção de uma gravidez e o encerramento da potencialidade reprodutiva, por meio da esterilização contraceptiva. Este compósito demandou a utilização de materiais empíricos distintos para a construção e análise das etapas eleitas dos percursos biográficos. Enfoca-se, primeiramente, o momento de passagem à sexualidade com parceiro. Problematiza-se a ideia de relaxamento das práticas contraceptivas, a partir da iniciação sexual, concepção corrente na literatura nacional em função do decréscimo de uso de preservativo em relações sexuais posteriores. Aborda-se, em seguida, as atitudes e as questões presentes no processo de construção da prática contraceptiva, no momento em que a vida sexual se torna regular. A proposição da perspectiva da gestão contraceptiva sublinha as posições dos protagonistas, marcadas pelo gênero. Por último, analisa-se as circunstâncias biográficas e os cenários relacionais da esterilização contraceptiva, a qual emerge como uma estratégia de estabilização ou de consolidação de um percurso contraceptivo/reprodutivo. O debate em torno da contracepção no Brasil apresenta a tendência a enfatizar a determinação social para explicar as gestações imprevistas. Contudo, salienta-se, com base em uma literatura crítica, as dimensões de agência individual, ainda que circunscritas por um campo delimitado de possibilidades.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magnetostatic field. The present study is restricted to the nonlinear phenomena rising from the interaction of electromagnetic waves in the ionized gas. The important effects of nonlinearity are wave-form distortion leads to cross modulation of one wave by a second amplitude-modulated wave.

The nonlinear effects are assumed to be small so that a perturbation method can be used. Boltzmann’s kinetic equation with an appropriate expression for the collision term is solved by expanding the electron distribution function into spherical harmonics in velocity space. In turn, the electron convection current density and the conductivity tensors of the nonlinear ionized gas are found from the distribution function. Finally, the expression for the current density and Maxwell’s equations are employed to investigate the effects of nonlinearity on the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas of semi-infinite extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new phenomena have been observed in Mössbauer spectra: a temperature-dependent shift of the center of gravity of the spectrum, and an asymmetric broadening of the spectrum peaks. Both phenomena were observed in thulium salts. In the temperature range 1˚K ≤ T ≤ 5˚K the observed shift has an approximate inverse temperature dependence. We explain this on the basis of a Van Vleck type of interaction between the magnetic moment of two nearly degenerate electronic levels and the magnetic moment of the nucleus. From the size of the shift we are able to deduce an “effective magnetic field” H = (6.0 ± 0.1) x 106 Gauss, which is proportional to ‹r-3M‹G|J|E› where ‹r-3M is an effective magnetic radial integral for the 4f electrons and |G› and |E› are the lowest 4f electronic states in Tm Cl3·6H2O. From the temperature dependence of the shift we have derived a preliminary value of 1 cm-1 for the splitting of these two states. The observed asymmetric line broadening is independent of temperature in the range 1˚K ≤ T ≤ 5˚K, but is dependent on the concentration of thulium ions in the crystal. We explain this broadening on the basis of spin-spin interactions between thulium ions. From size and concentration dependence of the broadening we are able to deduce a spin-spin relaxation time for Tm Cl3·6H2O of the order of 10-11 sec.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three wavelengths of red, green and blue of recording beams are systemically tested for the UV-assistant recording and optical fixing of holograms in a strongly oxidized Ce:Cu:LiNbO3 crystal. Three different photorefractive phenomena are observed. It is shown that the green beams will optimally generate a critical strong nonvolatile hologram with quick sensitivity and the optimal switching technique could be jointly used to obtain a nearly 100% high diffraction. Theoretical verification is given, and a prescription on the doping densities and on the oxidation/reduction states of the material to match a defined recording wavelength for high diffraction is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I:

The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.

Part II:

When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave response of the superconducting state in equilibrium and non-equilibrium configurations was examined experimentally and analytically. Thin film superconductors were mostly studied in order to explore spatial effects. The response parameter measured was the surface impedance.

For small microwave intensity the surface impedance at 10 GHz was measured for a variety of samples (mostly Sn) over a wide range of sample thickness and temperature. A detailed analysis based on the BCS theory was developed for calculating the surface impedance for general thickness and other experimental parameters. Experiment and theory agreed with each other to within the experimental accuracy. Thus it was established that the samples, thin films as well as bulk, were well characterised at low microwave powers (near equilibrium).

Thin films were perturbed by a small dc supercurrent and the effect on the superconducting order parameter and the quasiparticle response determined by measuring changes in the surface resistance (still at low microwave intensity and independent of it) due to the induced current. The use of fully superconducting resonators enabled the measurement of very small changes in the surface resistance (< 10-9 Ω/sq.). These experiments yield information regarding the dynamics of the order parameter and quasiparticle systems. For all the films studied the results could be described at temperatures near Tc by the thermodynamic depression of the order parameter due to the static current leading to a quadratic increase of the surface resistance with current.

For the thinnest films the low temperature results were surprising in that the surface resistance decreased with increasing current. An explanation is proposed according to which this decrease occurs due to an additional high frequency quasiparticle current caused by the combined presence of both static and high frequency fields. For frequencies larger than the inverse of the quasiparticle relaxation time this additional current is out of phase (by π) with the microwave electric field and is observed as a decrease of surface resistance. Calculations agree quantitatively with experimental results. This is the first observation and explanation of this non-equilibrium quasiparticle effect.

For thicker films of Sn, the low temperature surface resistance was found to increase with applied static current. It is proposed that due to the spatial non-uniformity of the induced current distribution across the thicker films, the above purely temporal analysis of the local quasiparticle response needs to be generalised to include space and time non-equilibrium effects.

The nonlinear interaction of microwaves arid superconducting films was also examined in a third set of experiments. The surface impedance of thin films was measured as a function of the incident microwave magnetic field. The experiments exploit the ability to measure the absorbed microwave power and applied microwave magnetic field absolutely. It was found that the applied surface microwave field could not be raised above a certain threshold level at which the absorption increased abruptly. This critical field level represents a dynamic critical field and was found to be associated with the penetration of the app1ied field into the film at values well below the thermodynamic critical field for the configuration of a field applied to one side of the film. The penetration occurs despite the thermal stability of the film which was unequivocally demonstrated by experiment. A new mechanism for such penetration via the formation of a vortex-antivortex pair is proposed. The experimental results for the thinnest films agreed with the calculated values of this pair generation field. The observations of increased transmission at the critical field level and suppression of the process by a metallic ground plane further support the proposed model.