953 resultados para NEUROSCIENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experiment was performed to characterise the movement kinematics and the electromyogram (EMG) during rhythmic voluntary flexion and extension of the wrist against different compliant (elastic-viscous-inertial) loads. Three levels of each type of load, and an unloaded condition, were employed. The movements were paced at a frequency of I Hz by an auditory metronome, and visual feedback of wrist displacement in relation to a target amplitude of 100degrees was provided. Electro-myographic recordings were obtained from flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR). The movement profiles generated in the ten experimental conditions were indistinguishable, indicating that the CNS was able to compensate completely for the imposed changes in the task dynamics. When the level of viscous load was elevated, this compensation took the form of an increase in the rate of initial rise of the flexor and the extensor EMG burst. In response to increases in inertial load, the flexor and extensor EMG bursts commenced and terminated earlier in the movement cycle, and tended to be of greater duration. When the movements were performed in opposition to an elastic load, both the onset and offset of EMG activity occurred later than in the unloaded condition. There was also a net reduction in extensor burst duration with increases in elastic load, and an increase in the rate of initial rise of the extensor burst. Less pronounced alterations in the rate of initial rise of the flexor EMG burst were also observed. In all instances, increases in the magnitude of the external load led to elevations in the overall level of muscle activation. These data reveal that the elements of the central command that are modified in response to the imposition of a compliant load are contingent, not only upon the magnitude, but also upon the character of the load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous everyday tasks require the nervous system to program a prehensile movement towards a target object positioned in a cluttered environment. Adult humans are extremely proficient in avoiding contact with any non-target objects (obstacles) whilst carrying out such movements. A number of recent studies have highlighted the importance of considering the control of reach-to-grasp (prehension) movements in the presence of such obstacles. The current study was constructed with the aim of beginning the task of studying the relative impact on prehension as the position of obstacles is varied within the workspace. The experimental design ensured that the obstacles were positioned within the workspace in locations where they did not interfere physically with the path taken by the hand when no obstacle was present. In all positions, the presence of an obstacle caused the hand to slow down and the maximum grip aperture to decrease. Nonetheless, the effect of the obstacle varied according to its position within the workspace. In the situation where an obstacle was located a small distance to the right of a target object, the obstacle showed a large effect on maximum grip aperture but a relatively small effect on movement time. In contrast, an object positioned in front and to the right of a target object had a large effect on movement speed but a relatively small effect on maximum grip aperture. It was found that the presence of two obstacles caused the system to decrease further the movement speed and maximum grip aperture. The position of the two obstacles dictated the extent to which their presence affected the movement parameters. These results show that the antic ipated likelihood of a collision with potential obstacles affects the planning of movement duration and maximum grip aperture in prehension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider whether the behaviour of the neural circuitry that controls lower limb movements in humans is shaped primarily by the spatiotemporal characteristics of bipedal gait patterns, or by selective pressures that are sensitive to considerations of balance and energetics. During the course of normal locomotion, the full dynamics of the neural circuitry are masked by the inertial properties of the limbs. In the present study, participants executed bipedal movements in conditions in which their feet were either unloaded or subject to additional inertial loads. Two patterns of rhythmic coordination were examined. In the in-phase mode, participants were required to flex their ankles and extend their ankles in synchrony. In the out-of-phase mode, the participants flexed one ankle while extending the other and vice versa. The frequency of movement was increased systematically throughout each experimental trial. All participants were able to maintain both the in-phase and the out-of-phase mode of coordination, to the point at which they could no longer increase their frequency of movement. Transitions between the two modes were not observed, and the stability of the out-of-phase and in-phase modes of coordination was equivalent at all movement frequencies. These findings indicate that, in humans, the behaviour of the neural circuitry underlying coordinated movements of the lower limbs is not constrained strongly by the spatiotemporal symmetries of bipedal gait patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary purpose of this experiment was to determine if left hand reaction time advantages in manual aiming result from a right hemisphere attentional advantage or an early right hemisphere role in movement preparation. Right-handed participants were required to either make rapid goal-directed movements to small targets or simply lift their hand upon target illumination. The amount of advance information about the target for a particular trial was manipulated by precuing a subset of potential targets prior to the reaction time interval. When participants were required to make aiming movements to targets in left space, the left hand enjoyed a reaction advantage that was not present for aiming in right space: or simple finger lifts. This advantage was independent of the amount or type of advance information provided by the precue. This finding supports the movement planning hypothesis. With respect to movement execution, participants completed their aiming movements more quickly when aiming with their right hand, particularly in right space. This right hand advantage in right space was due to the time required to decelerate the movement and to make feedback-based adjustments late in the movement trajectory. (C) 2001 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hippocampus displayed progressively gender-associated damage in Alzheimer's disease. However, gender effects have been largely neglected in studies of amnestic type mild cognitive impairment (aMCI) patients who were believed to represent an early stage of this disease. The goal of this study was to use in vivo neuroimaging techniques to determine whether there were any evidences of gender differences in hippocampal atrophy in aMCI. A region of interest-based magnetic resonance imaging approach was used to compare hippocampal volume between aMCI patients (22 male, 17 female) and normal aging controls (12 male, 11 female). Independent of group, male hippocampal volumes were larger than female volumes and right hippocampal volumes were typically smaller than left volumes. Hippocampal volumes were significantly reduced in the clinical group but no gender differences were noted in terms of degree of atrophy present. However, female patients showed more impaired cognitive function than male patients despite this apparent equivalence in atrophy. The absence of a gender difference suggested that early neuropathological progression might be independent of gender. However, the data also suggested female aMCI patients had an increased vulnerability to cognitive impairment earlier in the illness course.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To characterize the biophysical, pharmacologic, and functional properties of the Ca(2+)-activated Cl(-) current in retinal arteriolar myocytes. METHODS: Whole-cell perforated patch-clamp recordings were made from myocytes within intact isolated arteriolar segments. Arteriolar tone was assessed using pressure myography. RESULTS: Depolarizing of voltage steps to -40 mV and greater activated an L-type Ca(2+) current (I(Ca(L))) that was followed by a sustained current. Large tail currents (I(tail)) were observed on stepping back to -80 mV. The sustained current and I(tail) reversed close to 0 mV in symmetrical Cl(-) concentrations. The ion selectivity sequence for I(tail) was I(-)> Cl(-)> glucuronate. Outward I(tail) was sensitive to the Cl(-) channel blockers 9-anthracene-carboxylic acid (9-AC; 1 mM), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 1 mM), and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS; 1 mM), but only DIDS produced a substantial (78%) block of inward tail currents at -100 mV. I(tail) was decreased in magnitude when the normal bathing medium was substituted with Ca(2+)-free solution or if I(Ca(L)) was inhibited by 1 microM nimodipine. Caffeine (10 mM) produced large transient currents that reversed close to the Cl(-) equilibrium potential and were blocked by 1 mM DIDS or 100 microM tetracaine. DIDS had no effect on basal vascular tone in pressurized arterioles but dramatically reduced the level of vasoconstriction observed in the presence of 10 nM endothelin-1. CONCLUSIONS: Retinal arteriolar myocytes have I(Cl(Ca)), which may be activated by Ca(2+) entry through L-type Ca(2+) channels or Ca(2+) release from intracellular stores. This current appears to contribute to agonist-induced retinal vasoconstriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latent semantic indexing (LSI) is a popular technique used in information retrieval (IR) applications. This paper presents a novel evaluation strategy based on the use of image processing tools. The authors evaluate the use of the discrete cosine transform (DCT) and Cohen Daubechies Feauveau 9/7 (CDF 9/7) wavelet transform as a pre-processing step for the singular value decomposition (SVD) step of the LSI system. In addition, the effect of different threshold types on the search results is examined. The results show that accuracy can be increased by applying both transforms as a pre-processing step, with better performance for the hard-threshold function. The choice of the best threshold value is a key factor in the transform process. This paper also describes the most effective structure for the database to facilitate efficient searching in the LSI system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Advanced glycation end products (AGEs) accumulate during aging and have been observed in postmortem eyes within the retinal pigment epithelium (RPE), Bruch's membrane, and subcellular deposits (drusen). AGEs have been associated with age-related dysfunction of the RPE-in particular with development and progression to age-related macular degeneration (AMD). In the present study the impact of AGEs at the RPE-Bruch's membrane interface was evaluated, to establish how these modifications may contribute to age-related disease. METHODS: AGEs on Bruch's membrane were evaluated using immunohistochemistry. A clinically relevant in vitro model of substrate AGE accumulation was established to mimic Bruch's membrane ageing. Responses of ARPE-19 growing on AGE-modified basement membrane (AGE-BM) for 1 month were investigated by using a microarray approach and validated by quantitative (q)RT-PCR. In addition to identified AGE-related mRNA alterations, lysosomal enzyme activity and lipofuscin accumulation were also studied in ARPE-19 grown on AGE-BM. RESULTS: Autofluorescent and glycolaldehyde-derived AGEs were observed in clinical specimens on Bruch's membrane and choroidal extracellular matrix. In vitro analysis identified a range of dysregulated mRNAs in ARPE-19 exposed to AGE-BM. Altered ARPE-19 degradative enzyme mRNA expression was observed on exposure to AGE-BM. AGE-BM caused a significant reduction in cathepsin-D activity in ARPE-19 (P