973 resultados para Motion picture exhibition
Resumo:
The fourteen essays of this volume engage in distinct ways with the matter of motion in early modern Spanish poetics, without limiting the dialectic of stasis and movement to any single sphere or manifestation. Interrogation of the interdependence of tradition and innovation, poetry, power and politics, shifting signifiers, the intersection of topography and deviant temporalities, the movement between the secular and the sacred, tensions between centres and peripheries, issues of manuscript circulation and reception, poetic calls and echoes across continents and centuries, and between creative writing and reading subjects, all demonstrate that Helgerson's central notion of conspicuous movement is relevant beyond early sixteenth-century secular poetics, By opening it up we approximate a better understanding of poetry's flexible spatio-temporal co-ordinates in a period of extraordinary historical circumstances and conterminous radical cultural transformation
Resumo:
Apparent reversals in rotating trapezia have been regarded as evidence that human vision favours methods which are heuristic or form dependent. However, the argument is based on the assumption that general algorithmic methods would avoid the illusion, and that has never been clear. A general algorithm for interpreting moving parallels has been developed to address the issue. It handles a considerable range of stimuli successfully, but finds multiple interpretations in situations which correspond closely to those where apparent reversals occur. This strengthens the hypothesis that apparent reversals may occur when general algorithmic methods fail and heuristics are invoked as a stopgap.
Resumo:
A multivariate Fokker-Planck-type kinetic equation modeling a test - panicle weakly interacting with an electrostatic plasma. in the presence of a magnetic field B . is analytically solved in an Ornstein - Uhlenbeck - type approximation. A new set of analytic expressions are obtained for variable moments and panicle density as a function of time. The process is diffusive.
Resumo:
Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy. There is a paucity of literature investigating the radiobiological consequences of intrafraction motion and concerns regarding the impact of movement when applied to cancer cell lines in vitro exist. We have addressed this by developing a novel model which accurately replicates respiratory motion under experimental conditions to allow clinically relevant irradiation of cell lines. A bespoke phantom and motor driven moving platform was adapted to accommodate flasks containing medium and cells in order to replicate respiratory motion using varying frequencies and amplitude settings. To study this effect on cell survival in vitro, dose response curves were determined for human lung cancer cell lines H1299 and H460 exposed to a uniform 6 MV radiation field under moving or stationary conditions. Cell survival curves showed no significant difference between irradiation at different dose points for these cell lines in the presence or absence of motion. These data indicate that motion of unshielded cells in vitro does not affect cell survival in the presence of uniform irradiation. This model provides a novel research platform to investigate the radiobiological consequences of respiratory motion in radiotherapy.
Resumo:
Details of a new low power fast Fourier transform (FFT) processor for use in digital television applications are presented. This has been fabricated using a 0.6-µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8 × 8 mm and dissipates 1 W. The chip design is based on a novel VLSI architecture which has been derived from a first principles factorization of the discrete Fourier transform (DFT) matrix and tailored to a direct silicon implementation.
Resumo:
In this paper, a new reconfigurable multi-standard architecture is introduced for integer-pixel motion estimation and a standard-cell based chip design study is presented. This has been designed to cover most of the common block-based video compression standards, including MPEG-2, MPEG-4, H.263, H.264, AVS and WMV-9. The architecture exhibits simpler control, high throughput and relative low hardware cost and highly competitive when compared with excising designs for specific video standards. It can also, through the use of control signals, be dynamically reconfigured at run-time to accommodate different system constraint such as the trade-off in power dissipation and video-quality. The computational rates achieved make the circuit suitable for high end video processing applications. Silicon design studies indicate that circuits based on this approach incur only a relatively small penalty in terms of power dissipation and silicon area when compared with implementations for specific standards.
Resumo:
Details of a new low power FFT processor for use in digital television applications are presented. This has been fabricated using a 0.6 µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-rime video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm and dissipates 1 W. Its performance, in terms of computational rate per area per watt, is significantly higher than previously reported devices, leading to a cost-effective silicon solution for high quality video processing applications. This is the result of using a novel VLSI architecture which has been derived from a first principles factorisation of the DFT matrix and tailored to a direct silicon implementation.
Resumo:
This article uses the personal ledgers of a cinema manager to explore programming and film exhibition at the Southampton Odeon in the 1970s. The detailed accounts provide a rare insight into cinema exhibition and challenge the notion that 1970s cinema was all about sex, violence, horror and exploitation, suggesting instead that audiences at this cinema, favoured very different fare.
Resumo:
The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.
Resumo:
Motion of single micrometer-sized magnetic particles on patterned magnetic surfaces is controlled by a rotating magnetic field (see Figure and cover). Patterns of thin-film magnetic elements are tailored to form transport lines. Individual particles are separated by adding junctions to the transport lines. The method can improve existing applications in biotechnology and generate new ones in life sciences.