1000 resultados para Mnemonic techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we re-examine two important aspects of the dynamics of relative primary commodity prices, namely the secular trend and the short run volatility. To do so, we employ 25 series, some of them starting as far back as 1650 and powerful panel data stationarity tests that allow for endogenous multiple structural breaks. Results show that all the series are stationary after allowing for endogenous multiple breaks. Test results on the Prebisch–Singer hypothesis, which states that relative commodity prices follow a downward secular trend, are mixed but with a majority of series showing negative trends. We also make a first attempt at identifying the potential drivers of the structural breaks. We end by investigating the dynamics of the volatility of the 25 relative primary commodity prices also allowing for endogenous multiple breaks. We describe the often time-varying volatility in commodity prices and show that it has increased in recent years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When studying heterogeneous aquifer systems, especially at regional scale, a degree of generalization is anticipated. This can be due to sparse sampling regimes, complex depositional environments or lack of accessibility to measure the subsurface. This can lead to an inaccurate conceptualization which can be detrimental when applied to groundwater flow models. It is important that numerical models are based on observed and accurate geological information and do not rely on the distribution of artificial aquifer properties. This can still be problematic as data will be modelled at a different scale to which it was collected. It is proposed here that integrating geophysics and upscaling techniques can assist in a more realistic and deterministic groundwater flow model. In this study, the sedimentary aquifer of the Lagan Valley in Northern Ireland is chosen due to intruding sub-vertical dolerite dykes. These dykes are of a lower permeability than the sandstone aquifer. The use of airborne magnetics allows the delineation of heterogeneities, confirmed by field analysis. Permeability measured at the field scale is then upscaled to different levels using a correlation with the geophysical data, creating equivalent parameters that can be directly imported into numerical groundwater flow models. These parameters include directional equivalent permeabilities and anisotropy. Several stages of upscaling are modelled in finite element. Initial modelling is providing promising results, especially at the intermediate scale, suggesting an accurate distribution of aquifer properties. This deterministic based methodology is being expanded to include stochastic methods of obtaining heterogeneity location based on airborne geophysical data. This is through the Direct Sample method of Multiple-Point Statistics (MPS). This method uses the magnetics as a training image to computationally determine a probabilistic occurrence of heterogeneity. There is also a need to apply the method to alternate geological contexts where the heterogeneity is of a higher permeability than the host rock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate conceptual models of groundwater systems are essential for correct interpretation of monitoring data in catchment studies. In surface-water dominated hard rock regions, modern ground and surface water monitoring programmes often have very high resolution chemical, meteorological and hydrological observations but lack an equivalent emphasis on the subsurface environment, the properties of which exert a strong control on flow pathways and interactions with surface waters. The reasons for this disparity are the complexity of the system and the difficulty in accurately characterising the subsurface, except locally at outcrops or in boreholes. This is particularly the case in maritime north-western Europe, where a legacy of glacial activity, combined with large areas underlain by heterogeneous igneous and metamorphic bedrock, make the structure and weathering of bedrock difficult to map or model. Traditional approaches which seek to extrapolate information from borehole to field-scale are of limited application in these environments due to the high degree of spatial heterogeneity. Here we apply an integrative and multi-scale approach, optimising and combining standard geophysical techniques to generate a three-dimensional geological conceptual model of the subsurface in a catchment in NE Ireland. Available airborne LiDAR, electromagnetic and magnetic data sets were analysed for the region. At field-scale surface geophysical methods, including electrical resistivity tomography, seismic refraction, ground penetrating radar and magnetic surveys, were used and combined with field mapping of outcrops and borehole testing. The study demonstrates how combined interpretation of multiple methods at a range of scales produces robust three-dimensional conceptual models and a stronger basis for interpreting groundwater and surface water monitoring data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the findings from internal mould cooling trials using a water spray configuration applied at various internal mould air temperatures from 120°C to 180°C for an aluminium mould. To achieve maximum benefit in terms of cycle time reduction, internal mould water cooling was used in conjunction with a combination of external forced air and water cooling. Savings in cooling times of up to 30% were achieved compared to conventional external only forced air cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New techniques are presented for using the medial axis to generate high quality decompositions for generating block-structured meshes with well-placed mesh singularities away from the surface boundaries. Established medial axis based meshing algorithms are highly effective for some geometries, but in general, they do not produce the most favourable decompositions, particularly when there are geometry concavities. This new approach uses both the topological and geometric information in the medial axis to establish a valid and effective arrangement of mesh singularities for any 2-D surface. It deals with concavities effectively and finds solutions that are most appropriate to the geometric shapes. Methods for directly constructing the corresponding decompositions are also put forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In highly heterogeneous aquifer systems, conceptualization of regional groundwater flow models frequently results in the generalization or negligence of aquifer heterogeneities, both of which may result in erroneous model outputs. The calculation of equivalence related to hydrogeological parameters and applied to upscaling provides a means of accounting for measurement scale information but at regional scale. In this study, the Permo-Triassic Lagan Valley strategic aquifer in Northern Ireland is observed to be heterogeneous, if not discontinuous, due to subvertical trending low-permeability Tertiary dolerite dykes. Interpretation of ground and aerial magnetic surveys produces a deterministic solution to dyke locations. By measuring relative permeabilities of both the dykes and the sedimentary host rock, equivalent directional permeabilities, that determine anisotropy calculated as a function of dyke density, are obtained. This provides parameters for larger scale equivalent blocks, which can be directly imported to numerical groundwater flow models. Different conceptual models with different degrees of upscaling are numerically tested and results compared to regional flow observations. Simulation results show that the upscaled permeabilities from geophysical data allow one to properly account for the observed spatial variations of groundwater flow, without requiring artificial distribution of aquifer properties. It is also found that an intermediate degree of upscaling, between accounting for mapped field-scale dykes and accounting for one regional anisotropy value (maximum upscaling) provides results the closest to the observations at the regional scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inductively coupled plasma (ICP) following aqua regia digestion and X-ray fluorescence (XRF) are both geochemical techniques used to determine ‘total’ concentrations of elements in soil. The aim of this study is to compare these techniques, identify elements for which inconsistencies occur and investigate why they arise. A study area (∼14,000 km2) with a variety of total concentration controls and a large geochemical dataset (n = 7950) was selected. Principal component analysis determined underlying variance in a dataset composed of both geogenic and anthropogenic elements. Where inconsistencies between the techniques were identified, further numerical and spatial analysis was completed. The techniques are more consistent for elements of geogenic sources and lead, whereas other elements of anthropogenic sources show less consistency within rural samples. XRF is affected by sample matrix, while the form of element affects ICP concentrations. Depending on their use in environmental studies, different outcomes would be expected from the techniques employed, suggesting the choice of analytical technique for geochemical analyses may be more critical than realised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling-parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today's systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs ( logic, memory, mixed-signal) that are included in today's complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chili powder is a globally traded commodity which has been found to be adulterated with Sudan dyes from 2003 onwards. In this study, chili powders were adulterated with varying quantities of Sudan I dye (0.1-5%) and spectra were generated using near infrared reflectance spectroscopy (NIRS) and Raman
spectroscopy (on a spectrometer with a sample compartment modified as part of the study). Chemometrics were applied to the spectral data to produce quantitative and qualitative calibration models and prediction statistics. For the quantitative models coefficients of determination (R2) were found to be
0.891-0.994 depending on which spectral data (NIRS/Raman) was processed, the mathematical algorithm used and the data pre-processing applied. The corresponding values for the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were found to be 0.208-0.851%
and 0.141-0.831% respectively, once again depending on the spectral data and the chemometric treatment applied to the data. Indications are that the NIR spectroscopy based models are superior to the models produced from Raman spectral data based on a comparison of the values of the chemometric
parameters. The limit of detection (LOD) based on analysis of 20 blank chili powders against each calibration model gave 0.25% and 0.88% for the NIR and Raman data, respectively. In addition, adopting a qualitative approach with the spectral data and applying PCA or PLS-DA, it was possible to discriminate
between adulterated chili powders from non-adulterated chili powders.