966 resultados para Micropattern gaseous detectors
Resumo:
Copper containing MCM-41 materials can be used to both store gaseous nitric oxide and to catalytically produce nitric oxide from nitrite. The active species for the reaction is copper (I). Addition of cysteine to the solution in contact with the material has different effects depending on how much Cu(I) is present. This is a new method of extending the lifetime of gas delivery from a gas storage material.
Resumo:
Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N-2 and H-2). From a temperature dependent IR study, it has been estimated that the H-2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H-2 species.
Resumo:
The electrochemical uptake of oxygen on a Ru(0001) electrode was investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry. An ordered (2 × 2)-O overlayer forms at a potential close to the hydrogen region. At +0.42 and +1.12 V vs Ag/AgCl, a (3 × 1) phase and a (1 × 1)-O phase, respectively, emerge. When the Ru electrode potential is maintained at +1.12 V for 2 min, RuO2 grows epitaxially with its (100) plane parallel to the Ru(0001) surface. In contrast to the RuO domains, the non-oxidized regions of the Ru electrode surface are flat. If, however, the electrode potential is increased to +1.98 V for 2 min, the remaining non-oxidized Ru area also becomes rough. These findings are compared with O overlayers and oxides on the Ru(0001) and Ru(101¯1) surfaces created by exposure to gaseous O under UHV conditions. On the other hand, gas-phase oxidation of the Ru(101¯0) surface leads to the formation of RuO with a (100) orientation. It is concluded that the difference in surface energy between RuO(110) and RuO(100) is quite small. RuO again grows epitaxially on Ru(0001), but with the (110) face oriented parallel to the Ru(0001) surface. The electrochemical oxidation of the Ru(0001) electrode surface proceeds via a 3-dimensional growth mechanism with a mean cluster size of 1.6 nm, whereas under UHV conditions, a 2-dimensional oxide film (1-2 nm thick) is epitaxially formed with an average domain size of 20 µm. © 2000 American Chemical Society.
Resumo:
Purpose: In this study the Octavius detector 729 ionization chamber (IC) array with the Octavius 4D phantom was characterized for flattening filter (FF) and flattening filter free (FFF) static and rotational beams. The device was assessed for verification with FF and FFF RapidArc treatment plans.
Methods: The response of the detectors to field size, dose linearity, and dose rate were assessed for 6 MV FF beams and also 6 and 10 MV FFF beams. Dosimetric and mechanical accuracy of the detector array within the Octavius 4D rotational phantom was evaluated against measurements made using semiflex and pinpoint ionization chambers, and radiochromic film. Verification FF and FFF RapidArc plans were assessed using a gamma function with 3%/3 mm tolerances and 2%/2 mm tolerances and further analysis of these plans was undertaken using film and a second detector array with higher spatial resolution.
Results: A warm-up dose of >6 Gy was required for detector stability. Dose-rate measurements were stable across a range from 0.26 to 15 Gy/min and dose response was linear, although the device overestimated small doses compared with pinpoint ionization chamber measurements. Output factors agreed with ionization chamber measurements to within 0.6% for square fields of side between 3 and 25 cm and within 1.2% for 2 x 2 cm(2) fields. The Octavius 4D phantom was found to be consistent with measurements made with radiochromic film, where the gantry angle was found to be within 0.4. of that expected during rotational deliveries. RapidArc FF and FFF beams were found to have an accuracy of >97.9% and >90% of pixels passing 3%/3 mm and 2%/2 mm, respectively. Detector spatial resolution was observed to be a factor in determining the accurate delivery of each plan, particularly at steep dose gradients. This was confirmed using data from a second detector array with higher spatial resolution and with radiochromic film.
Conclusions: The Octavius 4D phantom with associated Octavius detector 729 ionization chamber array is a dosimetrically and mechanically stable device for pretreatment verification of FF and FFF RapidArc treatments. Further improvements may be possible through use of a detector array with higher spatial resolution (detector size and/or detector spacing). (C) 2013 American Association of Physicists in Medicine.
Resumo:
CO and C3H6 oxidation have been carried out in the absence and presence of water over a Pd/Al2O3catalyst. It is clear that water promotes CO and, as a consequence, C3H6oxidation takes place at muchlower temperatures compared with the dry feed. The significant increase in the catalyst’s activity withrespect to CO oxidation is not simply associated with changes in surface concentration as a result ofcompetitive adsorption effects. Utilising18O2as the reactant allows the pathways whereby the oxidationdue to gaseous dioxygen and where the water activates the CO and C3H6to be distinguished. In thepresence of water, the predominant pathway is via water activation with C16O2and C16O18O being themajor species formed and oxidation with dioxygen plays a secondary role. The importance of wateractivation is further supported by the significant decrease in its effect when using D2O versus H2O.
Resumo:
Ion acceleration driven by high intensity laser pulses is attracting an impressive and steadily increasing research effort. Experiments over the past 10-15 years have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties, which have stimulated interest in a number of innovative applications. While most of this work has been based on sheath acceleration processes, where space-charge fields are established by relativistic electrons at surfaces of the irradiated target, a number of novel mechanisms has been the focus of recent theoretical and experimental activities. This paper will provide a brief review of the state of the art in the field of laser-driven ion acceleration, with particular attention to recent developments.
Resumo:
A novel design for a compact gamma-ray spectrometer is presented. The proposed system allows for spectroscopy of high-flux multi-MeV gamma-ray beams with MeV energy resolution in a compact design. In its basic configuration, the spectrometer exploits conversion of gamma-rays into electrons via Compton scattering in a low-Z material. The scattered electron population is then spectrally resolved using a magnetic spectrometer. The detector is shown to be effective for gamma-ray energies between 3 and 20 MeV. The main properties of the spectrometer are confirmed by Monte Carlo simulations.
Resumo:
High-performance liquid chromatography (HPLC) is a major analytic tool in contemporary science, with possibly the highest number of systems installed and running globally. Modern HPLC offers high resolutions allowing the quantitative determination of target analytes within complex matrices by its compatibility with a number of detectors. The article describes the major technological characteristics of HPLC, reviewing separation mechanisms and their application in health and food science. Separation modes and media, key instrumental parameters, compatibility with detection modes, and applications are briefly discussed, aiming to provide helpful hints to the reader in the search for appropriate analytic techniques for a given task.
Resumo:
Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.
Resumo:
A novel numerical technique is proposed to model thermal plasma of microseconds/milliseconds time-scale effect. Modelling thermal plasma due to lightning strike will allow the estimation of electric current density, plasma pressure, and heat flux at the surface of the aircraft structure. These input data can then be used for better estimation of the mechanical/thermal induced damage on the aircraft structures for better protection systems design. Thermal plasma generated during laser cutting, electric (laser) welding and other plasma processing techniques have been the focus of many researchers. Thermal plasma is a gaseous state that consists from a mixture of electrons, ions, and natural particles. Thermal plasma can be assumed to be in local thermodynamic equilibrium, which means the electrons and the heavy species have equal temperature. Different numerical techniques have been developed using a coupled Navier Stokes – Heat transfer – Electromagnetic equations based on the assumption that the thermal plasma is a single laminar gas flow. These previous efforts focused on generating thermal plasma of time-scale in the range of seconds. Lighting strike on aircraft structures generates thermal plasma of time-scale of milliseconds/microseconds, which makes the previous physics used not applicable. The difficulty comes from the Navier-Stokes equations as the fluid is simulated under shock load, this introducing significant changes in the density and temperature of the fluid.
Resumo:
Optical sensors for ultrasound detection provide high sensitivity and bandwidth, essential for photoacoustic imaging in clinical diagnostics and biomedical research. Implementing plasmonic metamaterials in a non-resonant regime facilitates sub-nanosecond, highly sensitive detectors while eliminating cumbersome optical alignment necessary for resonant sensors.
Resumo:
PtSi/Si Schottky junctions, fabricated using a conventional technique of Pt deposition with a subsequent thermal anneal, are examined using X-ray diffraction, atomic force microscopy and a novel prism/gap/sample optical coupling system. With the aid of X-ray diffraction and atomic farce microscopy it is shown that a post-anneal etch in aqua regia is essential for the removal of an unreacted, rough surface layer of Pt, to leave a much smoother PtSi film. The prism/gap/sample or Otto coupling rig is mounted in a small UHV chamber and has facilities for remote variation of the gap (by virtue of a piezoactuator system) and variation of the temperature in the range of similar to 300 K - 85 K. The system is used to excite surface plasmon polaritons on the outer surface of the PtSi and thus produce sensitive optical characterisation as a function of temperature. This is performed in order to yield an understanding of the temperature dependence of phonon and interface scattering of carriers in the PtSi.
Resumo:
Monte Carlo calculations of quantum yield in PtSi/p-Si infrared detectors are carried out taking into account the presence of a spatially distributed barrier potential. In the 1-4 mu m wavelength range it is found that the spatial inhomogeneity of the barrier has no significant effect on the overall device photoresponse. However, above lambda = 4.0 mu m and particularly as the cut-off wavelength (lambda approximate to 5.5 mu m) is approached, these calculations reveal a difference between the homogeneous and inhomogeneous barrier photoresponse which becomes increasingly significant and exceeds 50% at lambda = 5.3 mu m. It is, in fact, the inhomogeneous barrier which displays an increased photoyield, a feature that is confirmed by approximate analytical calculations assuming a symmetric Gaussian spatial distribution of the barrier. Furthermore, the importance of the silicide layer thickness in optimizing device efficiency is underlined as a trade-off between maximizing light absorption in the silicide layer and optimizing the internal yield. The results presented here address important features which determine the photoyield of PtSi/Si Schottky diodes at energies below the Si absorption edge and just above the Schottky barrier height in particular.