959 resultados para Madeira River basin


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, biodiversity is threatened by several factors often associated with human population growth and the extension of areas occupied by human activity. In particular, freshwater fish fauna is affected by overfishing, deforestation, water pollution, introduction of exotic species and habitat fragmentation promoted by hydroelectric dams, among other environmental impact factors. Several action plans to preserve ichthyofauna biodiversity have been adopted; however, these plans frequently cover only a small number of species, and decisions are often made without strong scientific support. This study aimed to evaluate the genetic aspects of wild groups of Brycon orbignyanus, an endangered fish species, using microsatellites and D-loop regions to identify the genetic structure of the samples and to establish priority areas for conservation based on the genetic patterns of this species. The results indicated that the samples showed levels of genetic variability compatible with others studies with Neotropical fishes. However, the results obtained in the analysis of molecular variance (AMOVA) for microsatellites (F (ST) = 0.258) and D-loop (F (ST) = 0.234) and the interpopulation fixation index revealed that B. orbignyanus was structured in different subpopulations in the La Plata River basin; the areas with better environmental conditions also showed subgroups with higher rates of genetic variability. Future conservation actions addressing these sites should consider two different management units: the complex formed by the Ivinhema River, Upper Parana, Camargo Port and Ilha Grande groups; and the complex formed by the Verde River and Sucuriu River groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The location of Jundiai-Mirim river basin, close to large urban centers and industrial parks, has contributed to the appreciation of their lands. Consequently, the region has an intense process of urbanization that resulted in an increasing environmental disturbance in the forest areas. Given the need to preserve existing natural vegetation, because the watershed is the source of water used to supply Jundiai, SP, this study evaluated changes in the environmental quality of the watershed forest fragments between 1972 and 2013. The environment quality was determined by evaluating nine indicators of environmental disturbance, obtained by techniques of Geoprocessing and integrated by Multicriteria Analysis. The results showed a constant tendency of deteriorating the environmental quality of natural vegetation between 1972 and 2013, attributed to the intense process of occupation of the watershed. It is concluded that: (a) urbanization and deforestation of natural vegetation were primarily responsible for changes in environmental quality; (b) there is a need to create public policies to preserve the natural vegetation in the watershed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Jararaca River Basin suffers significative environmental impacts caused by inaccurate land use. In Brazil, the areas for permanent preservation are defined and protected by the 2012 Federal Law 12.651. These areas are located in the bank side and other specific places. The objective of this paper was to analyze the results of possible alternatives in function of different procedures used in the proposal elaboration. The methodology used was the elaboration of a priority map for the recovery of these areas using the Geographic Information System with multicriterial analyses and comparing it with the guidelines from the Jararaca River Basin Management Plan. As a result, there were identified differences in the priorities defined by technical issues from the priorities defined by public consultation process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Planejamento e Análise de Políticas Públicas - FCHS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow