970 resultados para Macarius III, Patriarch of Antioch, active 1636-1666.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of Hoxb4 in bone marrow cells promotes expansion of hematopoietic stem cell (HSC) populations in vivo and in vitro, indicating that this homeoprotein can activate the genetic program that determines self-renewal. However, this function cannot be solely attributed to Hoxb4 because Hoxb4(-/-) mice are viable and have an apparently normal HSC number. Quantitative polymerase chain reaction analysis showed that Hoxb4(-/-) c-Kit(+) fetal liver cells expressed moderately higher levels of several Hoxb cluster genes than control cells, raising the possibility that normal HSC activity in Hoxb4(-/-) mice is due to a compensatory up-regulation of other Hoxb genes. In this study, we investigated the competitive repopulation potential of HSCs lacking Hoxb4 alone, or in conjunction with 8 other Hoxb genes. Our results show that Hoxb4(-/-) and Hoxb1-b9(-/-) fetal liver cells retain full competitive repopulation potential and the ability to regenerate all myeloid and lymphoid lineages. Quantitative Hox gene expression profiling in purified c-KIt(+) Hoxb1-bg(-/-) fetal liver cells revealed an interaction between the Hoxa, b, and c clusters with variation in expression levels of Hoxa4, -a11, and -c4. Together, these studies show a complex network of genetic interactions between several Hox genes in primitive hematopoietic cells and demonstrate that HSCs lacking up to 30% of the active Hox genes remain fully competent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating “shotgun” cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog – the Fujian large-headed frog, Limnonectes fujianensis – and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 µM) and are devoid of haemolytic activity at concentrations up to 160 µM. Thus the “shotgun” cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new technique based on adaptive code-to-user allocation for interference management on the downlink of BPSK based TDD DS-CDMA systems is presented. The principle of the proposed technique is to exploit the dependency of multiple access interference on the instantaneous symbol values of the active users. The objective is to adaptively allocate the available spreading sequences to users on a symbol-by-symbol basis to optimize the decision variables at the downlink receivers. The presented simulations show an overall system BER performance improvement of more than an order of a magnitude with the proposed technique while the adaptation overhead is kept less than 10% of the available bandwidth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry is inherently risky, with a significant number of accidents and disasters occurring, particularly on confined construction sites. This research investigates and identifies the various issues affecting successful management of health and safety in confined construction sites. The rationale is that identifying the issues would assist the management of health and safety particularly in inner city centres which are mostly confined sites. Using empiricism epistemology, the methodology was based on qualitative research approach by means of multiple case studies in three different geographical locations of Ireland, UK and USA. Data on each case study were collected through individual interviews and focus group discussion with project participants. The findings suggest that three core issues are the underlying factors affecting management of health and safety on confined construction sites. It include, (i) lack of space, (ii) problem of co-ordination and management of site personnel, and (iii) overcrowding of workplace. The implication of this is that project teams and their organisations should see project processes from a holistic point of view, as a unified single system, where quick intervention in solving a particular issue should be the norm, so as not to adversely affect interrelated sequence of events in project operations. Proactive strategies should be devised to mitigate these issues and may include detail project programming, space management, effective constructability review and efficient co-ordination of personnel, plant and materials among others. The value of this research is to aid management and operation of brownfield sites by identifying issues impacting on health and safety management in project process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the active sulphoxide metabolite of the anthelmintic triclabendazole (TCBZ-SX, 15-50 mu g ml(-1)) on the incorporation of radioactively labelled [C-14] leucine by adult Fasciola hepatica tissue slices was measured by liquid scintillation counting. In addition, the ability of the microfilament-disrupting drug, cytochalasin B, and the microtubule-disrupting drug, tubulozole-C, to inhibit protein synthesis, was assessed by similar methods and compared with TCBZ-SX. The established protein synthesis inhibitors, cycloheximide and actinomycin D were used as positive controls. All the drugs showed a significant inhibition of protein synthesis, albeit to different extents; however, TCBZ-SX was the most potent, with no significant difference between its effect and that of cycloheximide or actinomycin D. Moreover, the concentration of TCBZ-SX, above 15 mu g ml(-1), had little further influence on incorporation of [C-14] leucine. This investigation demonstrates the inhibitory effect of TCBZ-SX, cytochalasin B and tubulozole-C on protein synthesis in F. hepatica and confirms the qualitative observations made in several previous ultrastructural studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria caused by several species of Plasmodium is major parasitic disease of humans, causing 1-3 million deaths worldwide annually. The widespread resistance of the human parasite to current drug therapies is of major concern making the identification of new drug targets urgent. While the parasite grows and multiplies inside the host erythrocyte it degrades the host cell hemoglobin and utilizes the released amino acids to synthesize its own proteins. The P. falciparum malarial M1 alanyl-aminopeptidase (PfA-M1) is an enzyme involved in the terminal stages of hemoglobin digestion and the generation of an amino acid pool within the parasite. The enzyme has been validated as a potential drug target since inhibitors of the enzyme block parasite growth in vitro and in vivo. In order to gain further understanding of this enzyme, molecular dynamics simulations using data from a recent crystal structure of PfA-M1 were performed. The results elucidate the pentahedral coordination of the catalytic Zn in these metallo-proteases and provide new insights into the roles of this cation and important active site residues in ligand binding and in the hydrolysis of the peptide bond. Based on the data, we propose a two-step catalytic mechanism, in which the conformation of the active site is altered between the Michaelis complex and the transition state. In addition, the simulations identify global changes in the protein in which conformational transitions in the catalytic domain are transmitted at the opening of the N-terminal 8 angstrom-long channel and at the opening of the 30 angstrom-long C-terminal internal chamber that facilitates entry of peptides to the active site and exit of released amino acids. The possible implications of these global changes with regard to enzyme function are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study it has been demonstrated that mixtures of two solid drugs, ibuprofen and methyl nicotinate, with different but complementary pharmacological activities and which exist as a single liquid phase over a wide composition range at skin temperature, can be formulated as o/w emulsions without the use of an additional hydrophobic carrier. These novel dual drug systems provided significantly enhanced in vitro penetration rates through a model lipophilic barrier membrane compared to conventional individual formulations of each active. Thus, for ibuprofen, drug penetration flux enhancements of three- and 10-fold were observed when compared to an aqueous ibuprofen suspension and a commercial alcohol-based ibuprofen formulation, respectively. Methyl nicotinate penetration rates were shown to be similar for aqueous gels and emulsified systems. Mechanisms explaining these observations are proposed. Novel dual drug formulations of ibuprofen and methyl nicotinate, formulated within the liquid range at skin temperature, were investigated by oscillatory rheology and texture profile analysis. demonstrating the effects of drug and viscosity enhancer concentrations, and disperse phase type upon the rheological, mechanical and drug penetration properties of these systems. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives an overview of the research done since 1999 at Eindhoven University of Technology in the Netherlands in the field of miniaturization of heterogeneous catalytic reactors. It is described that different incentives exist for the development of these microstructured reaction systems. These include the need for efficient research instruments in catalyst development and screening, the need for small-scale reactor devices for hydrogen production for low-power electricity generation with fuel cells, and the recent quest for intensified processing equipment and novel process architectures (as in the fine chemicals sector). It is demonstrated that also in microreaction engineering, catalytic engineering and reactor design go hand-in-hand. This is illustrated by the design of an integrated microreactor and heat-exchanger for optimum performance of a highly exothermic catalytic reaction, viz. ammonia oxidation. It is argued that future developments in catalytic microreaction technology will depend on the availability of very active catalysts (and catalyst coating techniques) for which microreactors may become the natural housing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance (MDR) occurs when bacteria simultaneously acquire resistance to a broad spectrum of structurally dissimilar compounds to which they have not previously been exposed. MDR is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. We characterised and purified the putative Escherichia coli MDR transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily. Functional characterisation of MdtM using growth inhibition and whole cell transport assays revealed its role in intrinsic resistance of E. coli cells to the antimicrobials ethidium bromide and chloramphenicol. Site-directed mutagenesis studies implied that the MdtM aspartate 22 residue and the highly conserved arginine at position 108 play a role in proton recognition. MdtM was homologously overexpressed and purified to homogeneity in dodecyl maltopyranoside detergent solution and the oligomeric state and stability of the protein in a variety of detergent solutions was investigated using size-exclusion HPLC. Purified MdtM is monomeric and stable in dodecyl maltopyranoside solution and binds chloramphenicol with nanomolar affinity in the same detergent. This work provides a firm foundation for structural studies on this class of multidrug transporter protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The only supernovae (SNe) to show gamma-ray bursts ( GRBs) or early x-ray emission thus far are overenergetic, broad- lined type Ic SNe ( hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximate to 6 x 10(51) erg) and ejected mass [similar to 7 times the mass of the Sun ( M.)] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a similar to 30 M. star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective hydrogenation of acetylene from ethylene rich streams was conducted at high pressure and in the presence of CO over two 1 wt% loaded Pd/TiO2 catalysts with differing dispersions. Although, the more poorly dispersed sample did not result in high acetylene conversion only a small proportion of the total available ethylene was hydrogenated to ethane. The more highly dispersed sample was able to remove acetylene to a level below the detection limit but this was at the expense of significant proportion (ca. 30%) of the available ethylene. Modification of the catalysts by exposure to triphenyl phosphine or diphenyl sulfide and subsequent reduction at 393 K led to improved performance with increased conversion of acetylene and decreased propensity to hydrogenate ethylene resulting in an overall net gain in ethylene. The higher dispersed sample which had been ligand modified provided the best results overall and in particular for the diphenyl sulfide treated sample which was able to completely eliminate acetylene and still obtain a net gain in ethylene. The differences observed are thought to be due to the creation of appropriate active ensembles of Pd atoms which are able to accommodate acetylene but have limited ability to adsorb ethylene. Sub-surface hydrogen formation was suppressed, but not eliminated, by exposure to modifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frontier between Gubbio (ancient Umbria) and Perugia (ancient Etruria), in the northeast part of the modern region of Umbria, was founded in the late sixth century BC. The frontier endured in different forms, most notably in the late antique and medieval periods, as well as fleetingly in 1944, and is fossilized today in the local government boundaries. Archaeological, documentary and
philological evidence are brought together to investigate different scales of time that vary from millennia to single days in the representation of a frontier that captured a watershed of geological origins. The foundation of the frontier appears to have been a product of the active agency of the Etruscans, who projected new settlements across the Tiber in the course of the sixth century BC,
protected at the outer limit of their territory by the naturally defended farmstead of Col di Marzo. The immediate environs of the ancient abbey of Montelabate have been studied intensively by targeted, systematic and geophysical survey in conjunction with excavation, work that is still in progress. An overview of the development of the frontier is presented here, employing the data currently available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for autocatalytic cleavage by cathepsin Ls were preserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The helminth parasite Fasciola hepatica secretes cysteine proteases to facilitate tissue invasion, migration, and development within the mammalian host. The major proteases cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) were recombinantly produced and biochemically characterized. By using site-directed mutagenesis, we show that residues at position 67 and 205, which lie within the S2 pocket of the active site, are critical in determining the substrate and inhibitor specificity. FheCL1 exhibits a broader specificity and a higher substrate turnover rate compared with FheCL2. However, FheCL2 can efficiently cleave substrates with a Pro in the P2 position and degrade collagen within the triple helices at physiological pH, an activity that among cysteine proteases has only been reported for human cathepsin K. The 1.4-A three-dimensional structure of the FheCL1 was determined by x-ray crystallography, and the three-dimensional structure of FheCL2 was constructed via homology-based modeling. Analysis and comparison of these structures and our biochemical data with those of human cathepsins L and K provided an interpretation of the substrate-recognition mechanisms of these major parasite proteases. Furthermore, our studies suggest that a configuration involving residue 67 and the "gatekeeper" residues 157 and 158 situated at the entrance of the active site pocket create a topology that endows FheCL2 with its unusual collagenolytic activity. The emergence of a specialized collagenolytic function in Fasciola likely contributes to the success of this tissue-invasive parasite.