960 resultados para MUSCLE FUNCTIONAL MAGNETIC RESONANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irritability, together with depression and anxiety, form three salient clinical features of pre-symptomatic Huntington's disease (HD). To date, the understanding of irritability in HD suffers from a paucity of experimental data and is largely based on questionnaires or clinical anecdotes. Factor analysis suggests that irritability is related to impulsivity and aggression and is likely to engage the same neuronal circuits as these behaviours, including areas such as medial orbitofrontal cortex (OFC) and amygdala. 16 pre-symptomatic gene carriers (PSCs) and 15 of their companions were asked to indicate the larger of two squares consecutively shown on a screen while undergoing functional magnetic resonance imaging (fMRI). Despite correct identification of the larger square, participants were often told that they or their partner had given the wrong answer. Size differences were subtle to make negative feedback credible but detectable. Although task performance, baseline irritability, and reported task-induced irritation were the same for both groups, fMRI revealed distinct neuronal processing in those who will later develop HD. In controls but not PSCs, task-induced irritation correlated positively with amygdala activation and negatively with OFC activation. Repetitive negative feedback induced greater amygdala activations in controls than PSCs. In addition, the inverse functional coupling between amygdala and OFC was significantly weaker in PSCs compared to controls. Our results argue that normal emotion processing circuits are disrupted in PSCs via attenuated modulation of emotional status by external or internal indicators. At later stages, this dysfunction may increase the risk for developing recognised, HD-associated, psychiatric symptoms such as irritability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between electrophysiological and functional magnetic resonance imaging (fMRI) signals remains poorly understood. To date, studies have required invasive methods and have been limited to single functional regions and thus cannot account for possible variations across brain regions. Here we present a method that uses fMRI data and singe-trial electroencephalography (EEG) analyses to assess the spatial and spectral dependencies between the blood-oxygenation-level-dependent (BOLD) responses and the noninvasively estimated local field potentials (eLFPs) over a wide range of frequencies (0-256 Hz) throughout the entire brain volume. This method was applied in a study where human subjects completed separate fMRI and EEG sessions while performing a passive visual task. Intracranial LFPs were estimated from the scalp-recorded data using the ELECTRA source model. We compared statistical images from BOLD signals with statistical images of each frequency of the eLFPs. In agreement with previous studies in animals, we found a significant correspondence between LFP and BOLD statistical images in the gamma band (44-78 Hz) within primary visual cortices. In addition, significant correspondence was observed at low frequencies (<14 Hz) and also at very high frequencies (>100 Hz). Effects within extrastriate visual areas showed a different correspondence that not only included those frequency ranges observed in primary cortices but also additional frequencies. Results therefore suggest that the relationship between electrophysiological and hemodynamic signals thus might vary both as a function of frequency and anatomical region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of human bodies is important in social life and for the recognition of another person's actions, moods, and intentions. Recent neuroimaging studies on mental imagery of human body parts suggest that the left hemisphere is dominant in body processing. However, studies on mental imagery of full human bodies reported stronger right hemisphere or bilateral activations. Here, we measured functional magnetic resonance imaging during mental imagery of bilateral partial (upper) and full bodies. Results show that, independently of whether a full or upper body is processed, the right hemisphere (temporo-parietal cortex, anterior parietal cortex, premotor cortex, bilateral superior parietal cortex) is mainly involved in mental imagery of full or partial human bodies. However, distinct activations were found in extrastriate cortex for partial bodies (right fusiform face area) and full bodies (left extrastriate body area). We propose that a common brain network, mainly on the right side, is involved in the mental imagery of human bodies, while two distinct brain areas in extrastriate cortex code for mental imagery of full and upper bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI) in 20 healthy participants. The latter saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task). fMRI results revealed higher activity in regions associated with emotion (e.g., the insula), motor function (e.g., motor cortex), and theory of mind (e.g., [pre]cuneus) during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression (eSUP) produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and eSUP modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train. MATERIALS AND METHODS: An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh-field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false-positive blood oxygenation level-dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared. RESULTS: Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false-positive activation in fMRI data. CONCLUSION: It is concluded that at high B(0) fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feeling of guilt is a complex mental state underlying several human behaviors in both private and social life. From a psychological and evolutionary viewpoint, guilt is an emotional and cognitive function, characterized by prosocial sentiments, entailing specific moral believes, which can be predominantly driven by inner values (deontological guilt) or by more interpersonal situations (altruistic guilt). The aim of this study was to investigate whether there is a distinct neurobiological substrate for these two expressions of guilt in healthy individuals. We first run two behavioral studies, recruiting a sample of 72 healthy volunteers, to validate a set of stimuli selectively evoking deontological and altruistic guilt, or basic control emotions (i.e., anger and sadness). Similar stimuli were reproduced in a event-related functional magnetic resonance imaging (fMRI) paradigm, to investigate the neural correlates of the same emotions, in a new sample of 22 healthy volunteers. We show that guilty emotions, compared to anger and sadness, activate specific brain areas (i.e., cingulate gyrus and medial frontal cortex) and that different neuronal networks are involved in each specific kind of guilt, with the insula selectively responding to deontological guilt stimuli. This study provides evidence for the existence of distinct neural circuits involved in different guilty feelings. This complex emotion might account for normal individual attitudes and deviant social behaviors. Moreover, an abnormal processing of specific guilt feelings might account for some psychopathological manifestation, such as obsessive-compulsive disorder and depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marijuana is the most widely used illicit drug, however its effects on cognitive functions underling safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ(9)-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ(9)-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD) after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli ("self") and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ(9)-Tetrahydrocannabinol. These findings bolster the zero-tolerance policy adopted in several countries that prohibits the presence of any amount of drugs in blood while driving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medial prefrontal cortical areas have been hypothesized to underlie altered contextual processing in posttraumatic stress disorder (PTSD). We investigated brain signaling of contextual information in this disorder. Eighteen PTSD subjects and 16 healthy trauma-exposed subjects underwent a two-day fear conditioning and extinction paradigm. On day 1, within visual context A, a conditioned stimulus (CS) was followed 60% of the time by an electric shock (conditioning). The conditioned response was then extinguished (extinction learning) in context B. On day 2, recall of the extinction memory was tested in context B. Skin conductance response (SCR) and functional magnetic resonance imaging (fMRI) data were collected during context presentations. There were no SCR group differences in any context presentation. Concerning fMRI data, during late conditioning, when context A signaled danger, PTSD subjects showed dorsal anterior cingulate cortical (dACC) hyperactivation. During early extinction, when context B had not yet fully acquired signal value for safety, PTSD subjects still showed dACC hyperactivation. During late extinction, when context B had come to signal safety, they showed ventromedial prefrontal cortex (vmPFC) hypoactivation. During early extinction recall, when context B signaled safety, they showed both vmPFC hypoactivation and dACC hyperactivation. These findings suggest that PTSD subjects show alterations in the processing of contextual information related to danger and safety. This impairment is manifest even prior to a physiologically-measured, cue-elicited fear response, and characterized by hypoactivation in vmPFC and hyperactivation in dACC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized"default-mode network" (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acquisition of reward and the avoidance of punishment could logically be contingent on either emitting or withholding particular actions. However,the separate pathways inthe striatumfor go and no-go appearto violatethis independence, instead coupling affect and effect. Respect for this interdependence has biased many studies of reward and punishment, so potential action- outcome valence interactions during anticipatory phases remain unexplored. In a functional magnetic resonance imaging study with healthy human volunteers, we manipulated subjects" requirement to emit or withhold an action independent from subsequent receipt of reward or avoidance of punishment. During anticipation, in the striatum and a lateral region within the substantia nigra/ventral tegmental area (SN/VTA), action representations dominated over valence representations. Moreover, we did not observe any representation associated with different state values through accumulation of outcomes, challenging a conventional and dominant association between these areas and state value representations. In contrast, a more medial sector of the SN/VTA responded preferentially to valence, with opposite signs depending on whether action was anticipatedto be emitted or withheld. This dominant influence of action requires an enriched notion of opponency between reward and punishment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults and can be successfully cured by surgery. One of the main complications of this surgery however is a decline in language abilities. The magnitude of this decline is related to the degree of language lateralization to the left hemisphere. Most fMRI paradigms used to determine language dominance in epileptic populations have used active language tasks. Sometimes, these paradigms are too complex and may result in patient underperformance. Only a few studies have used purely passive tasks, such as listening to standard speech. Methods In the present study we characterized language lateralization in patients with MTLE using a rapid and passive semantic language task. We used functional magnetic resonance imaging (fMRI) to study 23 patients [12 with Left (LMTLE), 11 with Right mesial temporal lobe epilepsy (RMTLE)] and 19 healthy right-handed controls using a 6 minute long semantic task in which subjects passively listened to groups of sentences (SEN) and pseudo sentences (PSEN). A lateralization index (LI) was computed using a priori regions of interest of the temporal lobe. Results The LI for the significant contrasts produced activations for all participants in both temporal lobes. 81.8% of RMTLE patients and 79% of healthy individuals had a bilateral language representation for this particular task. However, 50% of LMTLE patients presented an atypical right hemispheric dominance in the LI. More importantly, the degree of right lateralization in LMTLE patients was correlated with the age of epilepsy onset. Conclusions The simple, rapid, non-collaboration dependent, passive task described in this study, produces a robust activation in the temporal lobe in both patients and controls and is capable of illustrating a pattern of atypical language organization for LMTLE patients. Furthermore, we observed that the atypical right-lateralization patterns in LMTLE patients was associated to earlier age at epilepsy onset. These results are in line with the idea that early onset of epileptic activity is associated to larger neuroplastic changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción. Uno de los paradigmas más utilizados en el estudio de la atención es el Continuous Performance Test (CPT). La versión de pares idénticos (CPT-IP) se ha utilizado ampliamente para evaluar los déficits de atención en los trastornos del neurodesarrollo, neurológicos y psiquiátricos. Sin embargo, la localización de la activación cerebral de las redes atencionales varía significativamente según el diseño de resonancia magnética funcional (RMf) usado. Objetivo. Diseñar una tarea para evaluar la atención sostenida y la memoria de trabajo mediante RMf para proporcionar datos de investigación relacionados con la localización y el papel de estas funciones. Sujetos y métodos. El estudio contó con la participación de 40 estudiantes, todos ellos diestros (50%, mujeres; rango: 18-25 años). La tarea de CPT-IP se diseñó como una tarea de bloques, en la que se combinaban los períodos CPT-IP con los de reposo. Resultados. La tarea de CPT-IP utilizada activa una red formada por regiones frontales, parietales y occipitales, y éstas se relacionan con funciones ejecutivas y atencionales. Conclusiones. La tarea de CPT-IP utilizada en nuestro trabajo proporciona datos normativos en adultos sanos para el estudio del sustrato neural de la atención sostenida y la memoria de trabajo. Estos datos podrían ser útiles para evaluar trastornos que cursan con déficits en memoria de trabajo y en atención sostenida.