933 resultados para MEV RANGE
Resumo:
A joint use of experimental and theoretical techniques allows us to understand the key role of intermediate- and short-range defects in the structural and electronic properties of ZnO single crystals obtained by means of both conventional hydrothermal and microwave-hydrothermal synthesis methods. X-ray diffraction, Raman spectra, photoluminescence, scanning electronic and transmission electron microscopies were used to characterize the thermal properties, crystalline and optical features of the obtained nano and microwires ZnO structures. In addition, these properties were further investigated by means of two periodic models, crystalline and disordered ZnO wurtzite structure, and first principles calculations based on density functional theory at the B3LYP level. The theoretical results indicate that the key factor controlling the electronic behavior can be associated with a symmetry breaking process, creating localized electronic levels above the valence band.
Resumo:
A detector system that can measure X-ray intensity in the mammographic range of 22 to 36 kVp (equivalent photon energies ofthe beam between 11 and 15 keV) is presented. It consists of a lithium mobate detector and a high-sensitivity current-to-voltage converter.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Were synthesized different ferrites NixZn1-xFe2O4 (0,4 ≤ x ≤ 0,6) compositions by using citrate precursor method. Initially, the precursors citrates of iron, nickel and zinc were mixed and homogenized. The stoichiometric compositions were calcined at 350°C without atmosphere control and the calcined powders were pressed in pellets and toroids. The pressed material was sintered from 1100º up to 1200ºC in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, SEM and vibrating sample magnetometer (VSM). All sintered samples were characterized using XRD, SEM, VSM and measurements of magnetic permeability and loss factor were obtained. It was formed pure ferromagnetic phase at all used temperatures. The Rietveld analyses allowed to calculate the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (12-20 nm) to the calcined powder. By SEM, the sintered samples shows grains sizes from 1 to 10 μm. Sintered densities (ρ) were measured by the Archimedes method and with increasing Zn content, the bulk density decrease. The better magnetization results (105-110 emu/g) were obtained for x=0,6 at all sintering temperatures. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The sintered toroids presents relative magnetic permeability (μr) from 7 to 32 and loss factor (tanδ) of about 1. The frequency response of toroids range from 0,3 kHz to 0,2 GHz. The composition x=0,5 presents both greater μr and tanδ values and x=0,6 the most broad range of frequency response. Various microstructural factors show influence on the behavior of μr and tanδ, such as: grain size, porosity across grain boundary and inside the grain, grain boundary content and domain walls movement during the process of magnetization at high frequency studies (0,3kKz 0,2 GHz)
Resumo:
In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst
Resumo:
This study proposes to find a biodiesel through transesterification of rice bran oil with KI/Al2O3 checking the influence of two types of alumina (Amorphous and Crystalline) for conversion into methyl esters. The catalyst was synthesized by the wet impregnation method. Adding 30 mL of 35% KI(aq.) in 10 g of alumina, under stirring at 80 °C for 3 hours. The reaction conditions used in this study were optimized, with a molar ratio methanol:oil of 15:1, 8 h of reaction time and reflux temperature. The catalyst amount was varied in the range of 1 to 5 % wt. The solid catalysts materials were analyzed by: x-ray diffraction (XRD), thermogravimetry (TG), N2 adsorption/desorption, scanning electron microscopy (SEM) and basicity, for the identification of its structure and composition, verifying the presence of basic sites. The results showed that Al2O3(A) presents an amorphous structure, high surface area and a better catalytic activity, in relation to the catalyst synthesized with Al2O3(C) support that proved to have a more crystalline structure, having as well, a lesser surface area, enabling difficulties for the incorporation of active sites. The obtained biodiesel with 5% wt. KI/Al2O3(A) presented physicochemical properties within the standards specified by the Resolution No 7/2008 ANP and obtained the best reaction yield with 95.2%, according to quantitative measurement from the TG, which showed 96.2% conversion into methyl esters. It was furthermore found that with the increasing amount of the quantity of the catalyst in the reaction, there was also an increase in the ester content obtained. The specific mass and the kinematic viscosity were reduced with the increase of the amount of quantity of the catalyst, indicating an increase in the conversion of triglycerides
Resumo:
Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated
Resumo:
Different compositions of Ni0,5-xCuxZn0,5Fe2O4 and Ni0,5-xCoxZn0,5Fe2O4 0 ≤ x ≤ 0.3 were synthesized ferrite y the citrate precursor method. The stoichiometric compositions were calcined in air at 350°C and then pressed into pellets and toroids. The pressed samples were sintered at temperatures of 1000, 1050 and 1100°C/3h in air control at the speed of heating and cooling. The calcined powders were characterized by XRD, TGA / DTG, FTIR, SEM and vibrating sample magnetometry (VSM) and the sintered samples by XRD, SEM, MAV, density and measurements of permeability and magnetic losses. There was pure phase formation ferrimagnetism applied at all temperatures except for A-I composition at all sintering temperatures and A-II only at a temperature of 1100°C. Crystallite sizes were obtained by Rietveld analysis, nanometer size from 11 to 20 nm for the calcined powders. For SEM, the sintered samples showed grain size between 1 and 10 micrometers. Bulk density (ρ) of sintered material presented to the Families almost linear behavior with increasing temperature and a tendency to decrease with increasing concentration of copper, different behavior of the B Family, where the increase in temperature decreased the density. The magnetic measurements revealed the powder characteristics of a soft ferrimagnetic material. Two processes of magnetization were considered, the superparamagnetism at low temperatures (350°C) and the formation of magnetic domains at higher temperatures. Obtaining the best parameters for P and B-II magnetic ferrites at high temperatures. The sintered material at 1000°C showed a relative permeability (μ) from 50 to 800 for the A Family and from 10 to 600 for the B Family. The samples sintered at 1100°C, B Family showed a variation from 10 to 1000 and the magnetic loss (tan δ) of A and B Families, around of 1. The frequency response of the toroidal core is in the range of 0.3 kHz. Several factors contribute to the behavior of microstructure considering the quantities μ and tan δ, such as the grain size, inter-and intragranular porosity, amount of grain boundary and the aspects of the dynamics of domain walls at high frequencies.
Resumo:
Were synthesized spinel-type ferrites with general formula Ni0,8Mg0.2-xMxFe2O4, where M represents the doping Mn, Co or Mn + Co simultaneously, x ranges for the values 0.02, 0.05 and 0.1. The value of x was divided by 2 in cases where M equals Mn and Co conjugates. We used the citrate precursor method and heat treatment to obtain the phases at 1100°C. The materials were characterized by XRD, TGA/ DTGA, SEM, MAV and reflectivity measurements by the method of waveguide. Powders to 350°C/3.5 h were crystalline and nanosized. According to the results this temperature all powders have a percentage of ferrite phase over 90%. The composition had the addition of Mn and Co simultaneously showed a higher percentage of secondary phase NiO, 5.8%. The TGA/DTGA curves indicate that this sample reached phase (s) crystalline (s) at lowest temperatures. The X-ray diffractograms of the samples calcined at 350°C and 1100°C were treated with the Rietveld refinament technique. The powders calcined at 1100 °C/3h in air show to be 100% except spinel phase composition with 0.02 doping. The micrographs show clusters of particles with sizes smaller than 1 μm in calcination temperature of 1100°C which agreed with the result of Rietveld refinement. In the compositions doped with Mn were higher values of magnetization (45.90 and 53.20 Am2/kg), which did not cause high microwave absorption. The theoretical calculation of magnetization (MT) was consistent with the results, considering that there was agreement between the increase of magnetization experimental and theoretical. It was observed that there was the interrelation of the final effect of absorption with the thickness of MARE, the composition of ferrimagnetic materials and in particular the specific values of frequency. The analysis shows that the reflectivity increases in the concentration of cobalt increased the frequency range and also for absorption 10.17 GHz and 84%, respectively. The best result of chemical homogeneity and the value of 2.96 x 10-2 tesla coercive field were crucial for high performance ferrite absorber with 0.1 cobalt. The Cobalt has high magnetocrystalline anisotropy, it is associated with an increased coercive field, Hc. Therefore, this property improves the results of reflectivity of spinel ferrites
Resumo:
Ceramic powders based on oxides of perovskite-type structure is of fundamental interest nowadays, since they have important ionic-electronic conductivity in the use of materials with technological applications such as gas sensors, oxygen permeation membranes, catalysts and electrolytes for solid oxide fuel cells (SOFC). The main objective of the project is to develop nanostructured ceramic compounds quaternary-based oxide Barium (Br), Strontium (Sr), Cobalt (Co) and Iron (Fe). In this project were synthesized compounds BaxSr(1-x)Co0, 8Fe0,2O3- (x = 0.2, 0.5 and 0.8) through the oxalate co-precipitation method. The synthesized powders were characterized by thermogravimetric analysis and differential thermal analysis (TGADTA), X-ray diffraction (XRD) with the Rietveld refinement using the software MAUD and scanning electron microscopy (SEM). The results showed that the synthesis technique used was suitable for production of nanostructured ceramic solid solutions. The powders obtained had a crystalline phase with perovskite-type structure. The TGA-DTA results showed that the homogeneous phase of interest was obtained temperature above 1034°C. It was also observed that the heating rate of the calcination process did not affect the elimination of impurities present in the ceramic powder. The variation in the addition of barium dopant promoted changes in the average crystallite size in the nanometer range, the composition being BSCF(5582) obtained the lowest value (179.0nm). The results obtained by oxalate co-precipitation method were compared with those synthesis methods in solid state and EDTA-citrate method
Resumo:
This thesis focuses on the coprecipitation synthesis method for preparation of ceramic materials with perovskite structure, their characterization and application as catalytic material in the reaction of converting CO to CO2 developing a methodological alternative route of synthesis from the middle via oxalate coprecipitation material SrCo0,8Fe0,2O3-d. In order to check the influence of this method, it was also synthesized using a combined citrate - EDTA complexing method. The material was characterized by: X-ray diffraction (XRD), Rietveld refinement method, thermogravimetry and differential thermo analysis (TG / DTA), scanning (SEM) and transmission (TEM) electron microscopy, particle size distribution and surface analysis method BET. Both methods led to post-phase synthesis, with pH as a relevant parameter. The synthesis based on the method via oxalate coprecipitation among particles led to the crystalline phase as those obtained using a combined citrate - EDTA complexing method under the same conditions of heat treatment. The nature of the reagent used via oxalate coprecipitation method produced a material with approximately 80 % lower than the average size of crystallites. Moreover, the via oxalate coprecipitation method precursors obtained in the solid state at low temperature (~ 26 oC), shorter synthesis, greater thermal stability and a higher yield of around 90-95 %, maintaining the same order of magnitude the crystallite size that the combined citrate - EDTA complexing method. For purposes of comparing the catalytic properties of the material was also synthesized by the using a combined citrate - EDTA complexing method. The evaluation of catalytic materials SrCo0,8Fe0,2O3-d LaNi0,3Co0,7O3-d was accompanied on the oxidation of CO to CO2 using a stainless steel tubular reactor in the temperature range of 75-300 oC. The conversion CO gas was evaluated in both materials on the results shaved that the firm conversion was loves for the material LaNi0,3Co0,7O3-d
Resumo:
In this experimental study sintetic samples of Jacobsites (MnFe2O4) were synthesized by the Pechini method and calcined within ambient atmosphere and afterwards in the vacuum from 400 to 700ºC, the range of calcination temperatures. The X-Ray Diffraction (XRD) and the Scanning Electronic Microscopy (SEM) analysis have shown that the samples treated at 400ºC temperature are composed by a simple type of spinel phase, with a crystallite size of 8:8nm for the sample calcined in ambient atmosphere and 20; 1nm for the sample treated in the vacuum, showing that the cristallite average size can be manipulated by the atmosphere control. The hysteresis loops for the sample calcined at 400ºC in ambient atmosphere reveal features of superparamagnetic behavior with magnetization 29:3emu=g at the maximum field of 1:2T. The sample calcined in 400oC under vacuum show magnetization = 67emu=g at the maximum field of 1:5T. The sample treated at 500oC, under ambient atmosphere, has shown besides the spinel phase, secondary phases of hematite (Fe2O3) and bixbyite (FeMnO3). The hysteresis loops demonstrate a sharp drop of the magnetization compared to the previous sample. The analysis has revealed that for the samples treated in higher temperatures (600ºC and 700ºC) its observed the absence of the spinel phase and the maintenance of the bixbyite and hematite. The hysteresis loops for those samples in accordance to the external magnetic field are straight lines crossing the origin, consistent with the antiferromagnetic behavior of the phases.The Mössbauer espectroscopy show to the sample calcined at 400ºC within ambiente atmosphere two sextet and one doublet. The two sextets are assigned to the hyperfine fields related to the magnetic deployment in the nuclei of Fe3+ ions, at the tetraedric and octaedric sites. The doublet is assigned to superparamagnetic behavior of the particles with smaller diameter than dc . Now the sample calcined at 400ºC under vacuum only show two sextet
Resumo:
This study aimed at evaluating the effect of total replacement of dry corn by wet grain corn silage (WGCS) in the feed of label broilers older than 28 days of age on performance, mortality, carcass, parts, breast meat and thighs meat yields, and meat quality. A mixed-sex flock of 448 ISA S 757-N (naked-neck ISA JA Label) day-old chicks was randomly distributed in to randomized block experimental design with four treatments (T1 - with no WGCS; T2 - WGCS between 28 and 83 days; T3 - WGCS between 42 and 83 days; and T4 - WGCS between 63 and 83 days) and four replicates of 28 birds each. Birds were raised under the same management and feeding conditions until 28 days of age, when they started to have free access to paddock with pasture (at least 3m²/bird) and to be fed the experimental diets. Feed and water were offered ad libitum throughout the rearing period, which was divided in three stages: starter (1 to 28 days), grower (29 to 63 days), and finisher (64 to 83 days) according to the feeding schedule. During the short periods of WGCS use (group T2 during grower stage and T4 during the finisher stage), performance and mortality results were similar as to those of the control group (T1). At the end of the experiment, it was observed that the extended use of WGCS (T2 and T3) determined a negative effect on feed conversion ratio. However, the best results of breast meat yield were observed with birds fed WGCS since 28 days (T2). It was concluded that WGCS can replace dry corn grain for short periods during the grower and finisher stages with no impairment of meat quality and yield in slow growth broilers.