953 resultados para Large Subunit Of Nuclear Ribosomal Rna
Resumo:
Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive disease of the small pulmonary arteries, characterised by pulmonary vascular remodelling due to excessive proliferation and resistance to apoptosis of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). The increased pulmonary vascular resistance and elevated pulmonary artery pressures result in right heart failure and premature death. Germline mutations of the bone morphogenetic protein receptor-2 (bmpr2) gene, a receptor of the transforming growth factor beta (TGF-β) superfamily, account for approximately 75%-80% of the cases of heritable form of PAH (HPAH) and 20% of sporadic cases or idiopathic PAH (IPAH). IPAH patients without known bmpr2 mutations show reduced expression of BMPR2. However only ~ 20% of bmpr2-mutation carriers will develop the disease, due to an incomplete penetrance, thus the need for a ‘second hit’ including other genetic and/or environmental factors is accepted. Diagnosis of PAH occurs most frequently when patients have reached an advanced stage of disease. Although modern PAH therapies can markedly improve a patient’s symptoms and slow the rate of clinical deterioration, the mortality rate from PAH remains unacceptably high. Therefore, the development of novel therapeutic approaches is required for the treatment of this multifaceted disease. Noncoding RNAs (ncRNAs) include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs are ~ 22 nucleotide long and act as negative regulators of gene ex-pression via degradation or translational inhibition of their target mRNAs. Previous studies showed extensive evidence for the role of miRNAs in the development of PAH. LncRNAs are transcribed RNA molecules greater than 200 nucleotides in length. Similar to classical mRNA, lncRNAs are translated by RNA polymerase II and are generally alternatively spliced and polyadenylated. LncRNAs are highly versatile and function to regulate gene expression by diverse mechanisms. Unlike miRNAs, which exhibit well-defined actions in negatively regulating gene expression via the 3’-UTR of mRNAs, lncRNAs play more diverse and unpredictable regulatory roles. Although a number of lncRNAs have been intensively investigated in the cancer field, studies of the role of lncRNAs in vascular diseases such as PAH are still at a very early stage. The aim of this study was to investigate the involvement of specific ncRNAs in the development of PAH using experimental animal models and cell culture. The first ncRNA we focused on was miR-143, which is up-regulated in the lung and right ventricle tissues of various animal models of PH, as well as in the lungs and PASMCs of PAH patients. We show that genetic ablation of miR-143 is protective against the development of chronic hypoxia induced PH in mice, assessed via measurement of right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH) and pulmonary vascular remodelling. We further report that knockdown of miR-143-3p in WT mice via anti-miR-143-3p administration prior to exposure of mice to chronic hypoxia significantly decreases certain indices of PH (RVSP) although no significant changes in RVH and pulmo-nary vascular remodelling were observed. However, a reversal study using antimiR-143-3p treatment to modulate miR-143-3p demonstrated a protective effect on RVSP, RVH, and muscularisation of pulmonary arteries in the mouse chronic hypoxia induced PH model. In vitro experiments showed that miR-143-3p overexpression promotes PASMC migration and inhibits PASMC apoptosis, while knockdown miR-143-3p elicits the opposite effect, with no effects observed on cellular proliferation. Interestingly, miR-143-3p-enriched exosomes derived from PASMCs mediated cell-to-cell communication between PASMCs and PAECs, contributing to the pro-migratory and pro-angiogenic phenotype of PAECs that underlies the pathogenesis of PAH. Previous work has shown that miR-145-5p expression is upregulated in the chronic hypoxia induced mouse model of PH, as well as in PAH patients. Genetic ablation and pharmacological inhibition (subcutaneous injection) of miR-145-5p exert a protective against the de-velopment of PAH. In order to explore the potential for alternative, more lung targeted delivery strategies, miR-145-5p expression was inhibited in WT mice using intranasal-delivered antimiR-145-5p both prior to and post exposure to chronic hypoxia. The decreased expression of miR-145-5p in lung showed no beneficial effect on the development of PH compared with control antimiRNA treated mice exposed to chronic hypoxia. Thus, miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while the inhibition of miR-143-3p prevented the development of experimental pulmonary hypertension. We focused on two lncRNAs in this project: Myocardin-induced Smooth Muscle Long noncoding RNA, Inducer of Differentiation (MYOSLID) and non-annotated Myolnc16, which were identified from RNA sequencing studies in human coronary artery smooth muscle cells (HCASMCs) that overexpress myocardin. MYOSLID was significantly in-creased in PASMCs from patients with IPAH compared to healthy controls and increased in circulating endothelial progenitor cells (EPCs) from bmpr2 mutant PAH patients. Exposure of PASMCs to hypoxia in vitro led to a significant upregulation in MYOSLID expres-sion. MYOSLID expression was also induced by treatment of PASMC with BMP4, TGF-β and PDGF, which are known to be triggers of PAH in vitro. Small interfering RNA (siR-NA)-mediated knockdown MYOSLID inhibited migration and induced cell apoptosis without affecting cell proliferation and upregulated several genes in the BMP pathway in-cluding bmpr1α, bmpr2, id1, and id3. Modulation of MYOSLID also affected expression of BMPR2 at the protein level. In addition, MYOSLID knockdown affected the BMP-Smad and BMP-non-Smad signalling pathways in PASMCs assessed by phosphorylation of Smad1/5/9 and ERK1/2, respectively. In PAECs, MYOSLID expression was also induced by hypoxia exposure, VEGF and FGF2 treatment. In addition, MYOSLID knockdown sig-nificantly decreased the proliferation of PAECs. Thus, MYOSLID may be a novel modulator in pulmonary vascular cell functions, likely through the BMP-Smad and –non-Smad pathways. Treatment of PASMCs with inflammatory cytokines (IL-1 and TNF-α) significantly in-duced the expression of Myolnc16 at a very early time point. Knockdown of Myolnc16 in vitro decreased the expression of il-6, and upregulated the expression of il-1 and il-8 in PASMCs. Moreover, the expression levels of chemokines (cxcl1, cxcl6 and cxcl8) were sig-nificantly decreased with Myolnc16 knockdown. In addition, Myolnc16 knockdown decreased the MAP kinase signalling pathway assessed by phosphorylation of ERK1/2 and p38 MAPK and inhibited cell migration and proliferation in PASMCs. Thus, Myolnc16 may a novel modulator of PASMCs functions through anti-inflammatory signalling pathways. In summary, in this thesis we have demonstrated how miR-143-3p plays a protective role in the development of PH both in vivo animal models and patients, as well as in vitro cell cul-ture. Moreover, we have showed the role of two novel lncRNAs in pulmonary vascular cells. These ncRNAs represent potential novel therapeutic targets for the treatment of PAH with further work addressing to investigate the target genes, and the pathways modulated by these ncRNAs during the development of PAH.
Resumo:
Ulva, one of the first Linnaean genera, was later circumscribed to consist of green seaweeds with distromatic blades, and Enteromorpha Link was established for tubular forms. Although several lines of evidence suggest that these generic constructs are artificial, Ulva and Enteromorpha have been maintained as separate genera. Our aims were to determine phylogenetic relationships among taxa currently attributed to Ulva, Enteromorpha, Umbraulva Bae et I.K. Lee and the monotypic genus Chloropelta C.E. Tanner, and to make any nomenclatural changes justified by our findings. Analyses of nuclear ribosomal internal transcribed spacer DNA (ITS nrDNA) (29 ingroup taxa including the type species of Ulva and Enteromorpha), the chloroplast-encoded rbcL gene (for a subset of taxa) and a combined data set were carried out. All trees had a strongly supported clade consisting of all Ulva, Enteromorpha and Chloropelta species, but Ulva and Enteromorpha were not monophyletic. The recent removal of Umbraulva olivascens (P.J.L. Dangeard) Bae et I.K. Lee from Ulva is supported, although the relationship of the segregate genus Umbraulva to Ulvaria requires further investigation. These results, combined with earlier molecular and culture data, provide strong evidence that Ulva, Enteromorpha and Chloropelta are not distinct evolutionary entities and should not be recognized as separate genera. A comparison of traits for surveyed species revealed few synapomorphies. Because Ulva is the oldest name, Enteromorpha and Chloropelta are here reduced to synonymy with Ulva, and new combinations are made where necessary.
Resumo:
The tribe Gymnothamnieae Kajimura was proposed for the monotypic ceramiacean genus Gymnothamnion J. Agardh, previously placed either in the Ptiloteae Cramer or the Antithamnieae Hommersand. A bisporangial isolate of G. elegans (Schousboe ex C. Agardh) J. Agardh from Morocco formed only bisporangia in culture. Its smaller uninucleate cells and sporangia than those of tetrasporophytes suggested that bisporophytes may be haploid as in another member of the Ceramiaceae, Aglaothamnion diaphanum L'Hardy-Halos et Maggs. Phylogenetic analyses of the gene for the large subunit of rubisco (rbcL) from Gymnothamnion and representatives of eight other tribes of the Ceramiaceae confirmed that the removal of Gymnothamnion from the Ptiloteae and the Antithamnieae was warranted. Whereas all tribes with two or more representatives in our analyses were moderately or robustly resolved, Gymnothamnion did not form a strong clade with any other taxa. Analysis of rbcL sequences failed to resolve relationships between tribes, probably due to saturation at the high levels of sequence divergence found. In addition to reproductive features previously reported and interpreted as primitive, G. elegans shows a primitive vegetative feature and it is suggested that Gymnothamnion may be one of the most basal of the taxa presently included in the Ceramiaceae.
Resumo:
In the Mediterranean region the fruits of the strawberry tree (Arbutus unedo L.) may be fermented and distilled to produce a traditional beverage very much appreciated in Southern Europe. The aim of the present work was to study the diversity of the yeast population and the killer activity of the isolates identified as Saccharomyces cerevisiae, obtained during solid state industrial fermentations of the arbutus berries. The identification of the isolates was performed by the 5.8S rRNA-ITS region restriction analysis and by sequencing the D1/D2 region of the large subunit of the rRNA gene. At the start of the fermentations, various non-Saccharomyces species were detected including Aureobasidium pullulans, Dothichiza pithyophila, Dioszegia zsoltii, Hanseniaspora uvarum and yeasts belonging to the genera Metschnikowia, Cryptococcus and Rhodotorula. However, as the biological processes progressed the number of different species decreased with S. cerevisiae and Pichia membranaefaciens becoming dominant at advanced stages of the must fermentation that is characterized by high concentrations of ethanol. Forty three isolates identified as S. cerevisiae were tested for killer activity against two sensitive reference strains and Zygosaccharomyces bailii. Their killer sensitivity in relation to five killer referenced toxins (K2, K5, K8, K9 and K10) was also studied. Out of the isolates analyzed, 95.3% were sensitive and 4.7% were tolerant against the killer toxins tested. Only three isolates revealed killer activity against one sensitive strain and two of them against the spoiler yeast Z. bailii. The microbiota obtained revealed an interesting potential to be used as starter cultures to overcome unpredictable uncontrolled fermentations of the arbutus fruits as well as in other applications of biotechnological interest. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Au Canada, le cancer de la prostate est le cancer le plus fréquemment diagnostiqué chez les hommes et le plus mortel après les cancers du poumon et du côlon. Il y a place à optimiser le traitement du cancer de la prostate de manière à mettre en œuvre une médecine personnalisée qui s’adapte aux caractéristiques de la maladie de chaque patient de façon individuelle. Dans ce mémoire, nous avons évalué la réponse aux dommages de l’ADN (RDA) comme biomarqueur potentiel du cancer de la prostate. Les lésions potentiellement oncogènes de l'ADN déclenche une cascade de signalisation favorisant la réparation de l'ADN et l’activation des points de contrôle du cycle cellulaire pour préserver l’intégrité du génome. La RDA est un mécanisme central de suppression tumorale chez l’homme. La RDA joue un rôle important dans l’arrêt de la prolifération des cellules dont les génomes sont compromis, et donc, prévient la progression du cancer en agissant comme une barrière. Cette réponse cellulaire détermine également comment les cellules normales et cancéreuses réagissent aux agents utilisés pour endommager l'ADN lors du traitement du cancer comme la radiothérapie ou la chimiothérapie, en plus la présence d,un certain niveau de RDA dans les cellules du cancer de la prostate peuvent également influer sur l'issue de ces traitements. L’activation des signaux de la RDA peut agir comme un frein au cancer dans plusieurs lésions pré-néoplasiques de l'homme, y compris le cancer de la prostate. Il a été démontré que la RDA est augmentée dans les cellules de néoplasie intra- épithéliale (PIN) comparativement aux cellules prostatiques normales. Toutefois, le devient de la RDA entre le PIN et l’adénocarcinome est encore mal documenté et aucune corrélation n'a été réalisée avec les données cliniques des patients. Notre hypothèse est que les niveaux d’activation de la RDA seront variables selon les différents grades et agressivité du cancer de la prostate. Ces niveaux pourront être corrélés et possiblement prédire les réponses cliniques aux traitements des patients et aider à définir une stratégie plus efficace et de nouveaux biomarqueurs pour prédire les résultats du traitement et personnaliser les traitements en conséquence. Nos objectifs sont de caractériser l'activation de la RDA dans le carcinome de la prostate et corréler ses données avec les résultats cliniques. Méthodes : Nous avons utilisé des micro-étalages de tissus (tissue microarrays- TMAs) de 300 patients ayant subi une prostatectomie radicale pour un cancer de la prostate et déterminé le niveau d’expression de protéines de RDA dans le compartiment stromal et épithélial des tissus normaux et cancéreux. Les niveaux d’expression de 53BP1, p-H2AX, p65 et p-CHK2 ont été quantifiés par immunofluorescence (IF) et par un logiciel automatisé. Ces marqueurs de RDA ont d’abord été validés sur des TMAs-cellule constitués de cellules de fibroblastes normales ou irradiées (pour induire une activation du RDA). Les données ont été quantifiées à l'aide de couches binaires couramment utilisées pour classer les pixels d'une image pour que l’analyse se fasse de manière indépendante permettant la détection de plusieurs régions morphologiques tels que le noyau, l'épithélium et le stroma. Des opérations arithmétiques ont ensuite été réalisées pour obtenir des valeurs correspondant à l'activation de la RDA qui ont ensuite été corrélées à la récidive biochimique et l'apparition de métastases osseuses. Résultats : De faibles niveaux d'expression de la protéine p65 dans le compartiment nucléaire épithélial du tissu normal de la prostate sont associés à un faible risque de récidive biochimique. Par ailleurs, nous avons aussi observé que de faibles niveaux d'expression de la protéine 53BP1 dans le compartiment nucléaire épithéliale du tissu prostatique normal et cancéreux ont été associés à une plus faible incidence de métastases osseuses. Conclusion: Ces résultats confirment que p65 a une valeur pronostique chez les patients présentant un adénocarcinome de la prostate. Ces résultats suggèrent également que le marqueur 53BP1 peut aussi avoir une valeur pronostique chez les patients avec le cancer de la prostate. La validation d'autres marqueurs de RDA pourront également être corrélés aux résultats cliniques. De plus, avec un suivi des patients plus long, il se peut que ces résultats se traduisent par une corrélation avec la survie. Les niveaux d'activité de la RDA pourront éventuellement être utilisés en clinique dans le cadre du profil du patient comme le sont actuellement l’antigène prostatique spécifique (APS) ou le Gleason afin de personnaliser le traitement.
Resumo:
Salivarian trypanosomes pose a substantial threat to livestock, but their full diversity is not known. To survey trypanosomes carried by tsetse in Tanzania, DNA samples from infected proboscides of Glossina pallidipes and G. swynnertoni were identified using fluorescent fragment length barcoding (FFLB), which discriminates species by size polymorphisms in multiple regions of the ribosomal RNA locus. FELLB identified the trypanosomes in 65 of 105 (61.9%) infected proboscides, revealing 9 mixed infections. Of 7 different FFLB profiles, 2 were similar but not identical to reference West African Trypanosoma vivax; 5 other profiles belonged to known species also identified in fly midguts. Phylogenetic analysis of the glycosomal glyceraldehyde phosphate dehydrogenase gene revealed that the Tanzanian T. vivax samples fell into 2 distinct groups, both outside the main chide of African and South American T. vivax. These new T. vivax genotypes were common and widespread in tsetse in Tanzania. The T. brucei-like trypanosome previously described from tsetse midguts was also found in 2 proboscides, demonstrating a salivarian transmission route. Investigation of mammalian host range and pathogenicity will reveal the importance of these new trypanosomes for the epidemiology and control of animal trypanosomiasis in East Africa.
Resumo:
In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway
Resumo:
The phylogeny is one of the main activities of the modern taxonomists and a way to reconstruct the history of the life through comparative analysis of these sequences stored in their genomes aimed find any justification for the origin or evolution of them. Among the sequences with a high level of conservation are the genes of repair because it is important for the conservation and maintenance of genetic stability. Hence, variations in repair genes, as the genes of the nucleotide excision repair (NER), may indicate a possible gene transfer between species. This study aimed to examine the evolutionary history of the components of the NER. For this, sequences of UVRA, UVRB, UVRC and XPB were obtained from GenBank by Blast-p, considering 10-15 as cutoff to create a database. Phylogenetic studies were done using algorithms in PAUP programs, BAYES and PHYLIP package. Phylogenetic trees were build with protein sequences and with sequences of 16S ribosomal RNA for comparative analysis by the methods of parsimony, likelihood and Bayesian. The XPB tree shows that archaeal´s XPB helicases are similar to eukaryotic helicases. According to this data, we infer that the eukaryote nucleotide excision repair system had appeared in Archaea. At UVRA, UVRB and UVRC trees was found a monophyletic group formed by three species of epsilonproteobacterias class, three species of mollicutes class and archaeabacterias of Methanobacteria and Methanococci classes. This information is supported by a tree obtained with the proteins, UVRA, UVRB and UVRC concatenated. Thus, although there are arguments in the literature defending the horizontal transfer of the system uvrABC of bacteria to archaeabacterias, the analysis made in this study suggests that occurred a vertical transfer, from archaeabacteria, of both the NER genes: uvrABC and XPs. According the parsimony, this is the best way because of the occurrence of monophyletic groups, the time of divergence of classes and number of archaeabacterias species with uvrABC system
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The microorganisms are essential components in the maintenance of the biological and physicochemical balance of the soil. They exert important function including the degradation of residues of plants and animals and the release of nutrients in the alimentary chain. This work had as objective to compare the microbiota of a soil under bush covering (SMS) and other cropped with vegetables (SHC), suppressive or not it Rhizoctonia solani. Total microbial community DNA was extracted of soils, amplification for PCR of the genes 16S rDNA, inserted into pGEM (R)-T cloning vector and sequencing of the genes of the ribosomal RNA. The analysis of the results demonstrated that this methodology was efficient for evaluation of bacteria in ground. In the bush soil suppressive the microorganisms more found belonged to the phyla of the Acidobacterias, Verrucomicrobia and Actinobacterias and in the soil cultivated with vegetables the biggest frequency was of organisms pertaining to the phyla of the Proteobacterias, Firmicutes and Bacteroidetes.
Resumo:
Nine strains of a novel yeast species were isolated from rotting wood, tree bark, ant nests or living as endophytes in leaves of Vellozia gigantea. Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene showed that this species is related to Candida insectorum in the Yamadazyma clade. The new species differs from its closely related species by 10 and 11 substitutions in the ITS region and the D1/D2 domains of the large subunit of the rRNA gene, respectively. The species is heterothallic and forms asci with one to two hat-shaped ascospores. The name Yamadazyma riverae sp. nov. is proposed. The type strain of Yamadazyma riverae sp. nov. is UFMG-CM-Y444T (= CBS 14121) and the allotype strain is TT12 (= CBS 14098 = UFMG-CM-Y577). The Mycobank number is MB 813221.