999 resultados para Java7 Java8 Gradle Android StreamSupport Retrolambda Lambda-expression Stream Invokedynamic Backport Protelis
Resumo:
The influence of survivin expression on the radiosensitivity of tumor cells to high linear energy transfer (LET) radiation is investigated. Survivin-specific short-interfering RNA (siRNA) oligonucleotides were synthesized based on the survivin sequence provided by GenBank. Human hepatoma HepG2 cells were transfected with survivin-specific siRNA to inhibit its expressions. It was found that the transfection with surviving-specific siRNA increased the levels of G2/M arrest and the apoptotic rates induced by radiation in HepG2 cells. After exposure to high-LET carbon ions, a reduced clonogenic survival effect was observed in the cells treated with siRNA. These results show that survivin plays a key role in mediating the radioresistance of cells to high-LET radiation.
Resumo:
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that have documented neurological effects in children exposed in utero. To better define neuronally linked molecular targets during early development, zebrafish embryos were exposed to Aroclor 1254, a mixture of PCB congeners that are common environmental contaminants. Microarray analysis of the zebrafish genome revealed consistent significant changes in 38 genes. Of these genes, 55% (21) are neuronally related. One gene that showed a consistent 50% reduction in expression in PCB-treated embryos was heat-shock protein 70 cognate (Hsc70). The reduction in Hsc70 expression was confirmed by real-time polymerase chain reaction (PCR), revealing a consistent 30% reduction in expression in PCB-treated embryos. Early embryonic exposure to PCBs also induced structural changes in the ventro-rostral cluster as detected by immunocytochemistry. In addition, there was a significant reduction in dorso-rostral neurite outgrowth emanating from the RoL1 cell cluster following PCB exposure. The serotonergic neurons in the developing diencephalon showed a 34% reduction in fluorescence when labeled with a serotonin antibody following PCB exposure, corresponding to a reduction in serotonin concentration in the neurons. The total size of the labeled neurons was not significantly different between treated and control embryos, indicating that the development of the neurons was not affected, only the production of serotonin within the neurons. The structural and biochemical changes in the developing central nervous system following early embryonic exposure to Aroclor 1254 may lead to alterations in the function of the affected regions.
Resumo:
Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e. g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.
Resumo:
p21(Waf1/Cip1), best known as a broad-specificity inhibitor of cyclin/cyclin-dependent kinase complexes, can interact with various target proteins, and this ability relies on its structural plasticity. Therefore, studies on the structural properties of p(21) are very important to understand its structure-function relationship. However, detailed studies on its secondary structure and biophysical properties have been comparatively sparse. A human p(21) gene was cloned into the temperature expression vector pBV220 and transformed into Escherichia coli strain JM109.
Self-assembly of lambda-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate
Resumo:
In this article, highly rough and stable surface enhanced Raman scattering (SERS)-active substrates had been fabricated by a facile layer by-layer technique. Unique lambda-DNA networks and CTAB capped silver nanoparticles (AgNP) were alternatively self-assembled on the charged mica surface until a desirable number of bilayers were reached. The as-prepared hybrid architectures were characterized by UV-vis spectroscopy, tapping mode atomic force microscopy (AFM) and confocal Raman microscopy, respectively.
Resumo:
We report a quantum-chemical study of electronic, optical and charge transporting properties of four platinum (II) complexes, pt((CN)-N-Lambda)(2) ((CN)-N-Lambda=phenylpyridine or thiophenepyridine). The lowest-lying absorptions at 442, 440, 447 and 429 nm are all attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-centered (LC) pi - pi(*) transition. While, unexpectedly, the lowest-lying phosphorescent emissions at 663, 660, 675 and 742 nm are mainly from metal-to-ligand charge transfer ((MLCT)-M-3) ligand-centered (LC) pi ->pi* transition. Ionization potential (IP), electron affinities (EA) and reorganization energy P (lambda(hole/electron)) were obtained to evaluate the charge transfer and balance properties between hole and electron.
Resumo:
In this paper, we evaluated various parameters of culture condition affecting high-level soluble expression of human cyclin A, in Escherichia coli BL21(DE3), and demonstrated that the highest protein yield was obtained using TB(no glycerol) + 0.5% glucose medium at 25 degrees C. By single immobilized metal ion affinity chromatography, we got highly purified human cyclin A(2) with a yield ranged from 20 to 30 mg/L. By amyloid-diagnostic dye ThT binding and Fourier transform infrared spectroscopy, we observed a significant decrease in alpha-helix content and an increase in beta-sheet structure in cyclin A(2) inclusion body in comparison to its native protein, and confirmed the resemblance of the internal organization of cyclin A(2) inclusion body and amyloid fibrils.
Resumo:
In bacteriophage, transcription elongation is regulated by the N protein, which binds a nascent mRNA hairpin ( termed boxB) and enables RNA polymerase to read through distal terminators. We have examined the structure, energetics and in vivo function of a number of N boxB complexes derived from in vitro protein selection. Trp18 fully stacks on the RNA loop in the wild-type structure, and can become partially or completely unstacked when the sequence context is changed three or four residues away, resulting in a recognition interface in which the best binding residues depend on the sequence context. Notably, in vivo antitermination activity correlates with the presence of a stacked aromatic residue at position 18, but not with N boxB binding affinity. Our work demonstrates that RNA polymerase responds to subtle conformational changes in cis-acting regulatory complexes and that approximation of components is not sufficient to generate a fully functional transcription switch.
Resumo:
Two systems of mixed oxides, La2-xSrxCuO4 +/- lambda (0.0 less than or equal to x less than or equal to 1.0) and La(2-x)Tn(x)CuO(4 +/-) (lambda) (0.0 less than or equal to x less than or equal to 0.4), with K2NiF4 structure were prepared. The average valence of Cu ions and oxygen nonstoichiometry (lambda) were determined by means of chemical analysis. Meanwhile, the adsorption and activation of nitrogen monoxide (NO) and the mixture of NO + CO over the mixed oxide catalysts were studied by means of mass spectrometry temperature-programmed desorption (MS-TPD). The catalytic behaviors in the reactions of direct decomposition of NO and its reduction by CO were investigated, and were discussed in relation with average valence of Cu ions, A and the activation and adsorption of reactant molecules. It has been proposed that both reactions proceed by the redox mechanism, in which the oxygen vacancies and the lower-valent Cu ions play important roles in the individual step of the redox cycle. Oxygen vacancy is more significant for NO decomposition than for NO + CO reaction. For the NO + CO reaction, the stronger implication of the lower-valent Cu ions or oxygen vacancy depends on reaction temperature and the catalytic systems (Sr- or Th-substituted). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A series of layered mixed oxides La4BaCu5-xMnxO13+lambda(x = 0-5) was prepared, characterized and used as catalysts for NO+CO reaction. It was found that all the samples were single phase having a structure with five-layered-perovskite. La4BaCu2Mn3O13+lambda showed the highest activity in the title reaction, this could be attributed to the synergetic effect between Cu and Mn. The results of TPR, TPD and excess oxygen investigations confirmed that the Cu ion would be the active center. The displacement of the Cu ion by Mn caused the Cu ion to be more easily reducible and more content of excess oxygen, and it was beneficial to the activity of the catalyst. The reaction mechanism was also proposed.
Resumo:
Two series of layered mixed oxides La4BaCu5-xMxO13+lambda(M = Mn, Co, x = 0 similar to 5) were prepared and characterized by means of XRD, XPS, O-2-TPD and chemical analysis. The results show that their structures are 5-layered ABO(3) perovskite, and the XPS and O-2-TPD investigation confirms that there exists synergistic effect between Cu ion and M when M ion is doped into the lattice of La4BaCu5O13+lambda,, and the synergistic effect between Mn and Cu is stronger than that of Cu-Co.
Resumo:
Two groups of mixed oxides La2-xThxCuO4+/-lambda (0.0 less than or equal to x less than or equal to 0.4) and La2-xSrxCuO4+/-lambda (0.0 less than or equal to x less than or equal to 1.0) were prepared. Their crystal structures were studied with XRD and IR spectra, etc. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) was measured through chemical analyses. Catalysis of the abovementioned mixed oxides was investigated in phenol hydroxylation, good results were obtained for some mixed oxides, and found that the catalysis of these mixed oxides have close relation with their defect structure and composition. A radical substitution mechanism was also proposed for this catalytic reaction.
Resumo:
Two mixed oxide systems La2-xSrxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 1.0) and La2+xThxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 0.4) with K2NiF4 structure were prepared by varying re values; Their crystal structures were studied by means of XRD and IR spectra. The average valence of Cu ion at B site, nonstoichiometric oxygen (A) and the chemical composition in the bulk and on the surface of the catalysts were measured by means of chemical analysis and XPS. The catalytic behavior in reaction CO + NO was investigated under the regular change of average valence of Cu ion at B site and nonstoichiometric oxygen (lambda). Meanwhile, the adsorption and activation of the small molecules NO and the mixture of NO + CO over the mixed oxide catalysts were studied by means of MS-TPD. The catalytic mechanism of reaction NO + CO over these oxide catalysts were proposed; and it has been found that, at lower temperatures the activation of NO is the rate determining step and the catalytic activity is related to the lower valent metallic ion and its concentration, while at higher temperatures the adsorption of NO is the rate determining step and the catalytic activity is related to the oxygen vacancy and its concentration.
Resumo:
A series of Sr2+ doped perovskite like oxides La2-xSrxCuO4-lambda (x = 0 similar to 1) were prepared, the structure, lattice parameters, content of Cu3+, oxygen vacancies created by Sr2+ substitution and composition of these complex oxides were studied by XRD and iodic titration method. The redox ability,active oxygen species and surface image were evaluated and analyzed with TPD, TG, XPS and SEM measurements. The catalytic activity for ammonia oxidation over these oxides was tested, and the relationship among the catalytic properties, structure, nonstoichiometric oxygen,redox ability and surface behavior were correlated and some information on the mechanism of ammonia oxidation was obtained.