927 resultados para Irregular objects
Resumo:
Polymicrogyria (PMG) is a malformation of cortical development characterized by an excessive number of small gyri and abnormal cortical lamination, giving the cortical surface an irregular and gross appearance. The severity of clinical manifestations correlates with the extent of cortical involvement. The objective of the present study was to describe three families with linguistic features of developmental language disorder and reading impairment, and to establish a neuroanatomic correlation through neuroimaging. Subjects have been submitted to a comprehensive protocol including psychological assessment, language evaluation, neurological examination, and neuroimaging investigation. In our families, children usually had the diagnosis of developmental language disorder while adults had the diagnosis of reading impairment. MRI showed perisylvian polymicrogyria in several subjects of each family. Our data support the idea that there is a co-occurrence of developmental language disorder and reading impairment and both conditions may be associated with polymicrogyria. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report biogenic magnetite whiskers, with axial ratios of 6: 1, elongated in the [1 1 1]. [1 1 2] and [1 0 0] directions, resembling the magnetite whiskers detected in the Martian meteorite ALH84001 by Bradley ct nl., and interpreted by those authors as evidence of vapour-phase (abiogenic) growth. Magnetosomal whiskers with extended defects consistent with screw dislocations and magnetosomes resembling flattened twinned platelets, as well as other twinning phenomena and other structural defects, are also reported here. Magnetosomes with teardrop-shaped. cuboidal. irregular and jagged structures similar to those detected in ALH84001 by McKay et al.. coprecipitation of magnetite possibly with amorphous calcium carbonate, coprecipitation of magnetite possibly with amorphous silica, the incorporation of titanium in volutin inclusions and disoriented arrays of magnetosomes are also described. These observations demonstrate that the structures of the magnetite particles in ALH84001. their spatial arrange ment and coprecipitation with carbonates and proximity to silicates are consistent with being biogenic. Electron-beam-induced flash-melting of magnetosomes produced numerous screw dislocations in the (1 1 1). (1 0 0) and (1 1 0) lattice planes and induced fusion of platelets. From this, the lack of screw dislocations reported in the magnetite particles in ALH84001 (McKay et al.. and Bradley et al.) indicates that they have a low-temperature origin.
Resumo:
Previous reports about the rat ovary have shown that cold stress promotes ovarian morphological alterations related to a polycystic ovary (PCO) condition through activation of the ovarian sympathetic nerves. Because the noradrenergic nucleus locus coeruleus (LC) is activated by cold stress and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway, this study aimed to evaluate the LC`s role in cold stress-induced PCO in rats. Ovarian morphology and endocrine and sympathetic functions were evaluated after 8 wk of chronic intermittent cold stress (4 C, 3 h/d) in rats with or without LC lesion. The effect of acute and chronic cold stress upon the LC neuron activity was confirmed by Fos protein expression in tyrosine hydroxylase-immunoreactive neurons. Cold stress induced the formation of follicular cysts, type III follicles, and follicles with hyperthecosis alongside increased plasma estradiol and testosterone levels, irregular estrous cyclicity, and reduced ovulation. Considering estradiol release in vitro, cold stress potentiated the ovarian response to human chorionic gonadotropin. Ovarian norepinephrine (NE) was not altered after 8 wk of stress. However, LC lesion reduced NE activity in the ovary of cold-stressed rats, but not in controls, and prevented all the cold stress effects evaluated. Cold stress increased the number of Fos/tyrosine hydroxylase-immunoreactive neurons in the LC, but this effect was more pronounced for acute stress as compared with chronic stress. These results show that cold stress promotes PCO in rats, which apparently depends on ovarian NE activity that, under this condition, is regulated by the noradrenergic nucleus LC.
Resumo:
The extrastriate cortex near the dorsal midline has been described as part of an 'express' pathway that provides visual input to the premotor cortex. This pathway is considered important for the integration of sensory information about the visual field periphery and the skeletomotor system, especially in relation to the control of arm movements. However, a better understanding of the functional contributions of different parts of this complex has been hampered by the lack of data on the extent and boundaries of its constituent visual areas. Recent studies in macaques have provided the first detailed view of the topographical organization of this region in Old World monkeys. Despite differences in nomenclature, a comparison of the visuotopic organization, myeloarchitecture and connections of the relevant visual areas with those previously studied in New World monkeys reveals a remarkable degree of similarity and helps to clarify the subdivision of function between different areas of the dorsomedial complex. A caudal visual area, named DM or V6, appears to be important for the detection of coherent patterns of movement across wide regions of the visual field, such as those induced during self-motion. A rostral area, named M or V6A, is more directly involved with visuomotor integration. This area receives projections both from DM/V6 and from a separate motion analysis channel, centred on the middle temporal visual area (or V5), which detects the movement of objects in extrapersonal space. These results support the suggestion, made earlier on the basis of more fragmentary evidence, that the areas rostral to the second visual area in dorsal cortex are homologous in all simian primates. Moreover, they emphasize the importance of determining the anatomical organization of the cortex as a prerequisite for elucidating the function of different cortical areas.
Resumo:
Numerous everyday tasks require the nervous system to program a prehensile movement towards a target object positioned in a cluttered environment. Adult humans are extremely proficient in avoiding contact with any non-target objects (obstacles) whilst carrying out such movements. A number of recent studies have highlighted the importance of considering the control of reach-to-grasp (prehension) movements in the presence of such obstacles. The current study was constructed with the aim of beginning the task of studying the relative impact on prehension as the position of obstacles is varied within the workspace. The experimental design ensured that the obstacles were positioned within the workspace in locations where they did not interfere physically with the path taken by the hand when no obstacle was present. In all positions, the presence of an obstacle caused the hand to slow down and the maximum grip aperture to decrease. Nonetheless, the effect of the obstacle varied according to its position within the workspace. In the situation where an obstacle was located a small distance to the right of a target object, the obstacle showed a large effect on maximum grip aperture but a relatively small effect on movement time. In contrast, an object positioned in front and to the right of a target object had a large effect on movement speed but a relatively small effect on maximum grip aperture. It was found that the presence of two obstacles caused the system to decrease further the movement speed and maximum grip aperture. The position of the two obstacles dictated the extent to which their presence affected the movement parameters. These results show that the antic ipated likelihood of a collision with potential obstacles affects the planning of movement duration and maximum grip aperture in prehension.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of HO2 have been investigated quantum-mechanically by the Lanczos homogeneous filter diagonalization (LHFD) method. The calculated resonance energies, rates (widths), and product state distributions are compared to results from an autocorrelation function-based filter diagonalization (ACFFD) method. For calculating resonance wave functions via ACFFD, an analytical expression for the expansion coefficients of the modified Chebyshev polynomials is introduced. Both dissociation rates and product state distributions of O-2 show strong fluctuations, indicating the dissociation of HO2 is essentially irregular. (C) 2001 American Institute of Physics.
Resumo:
The influence of temporal association on the representation and recognition of objects was investigated. Observers were shown sequences of novel faces in which the identity of the face changed as the head rotated. As a result, observers showed a tendency to treat the views as if they were of the same person. Additional experiments revealed that this was only true if the training sequences depicted head rotations rather than jumbled views: in other words, the sequence had to be spatially as well as temporally smooth. Results suggest that we are continuously associating views of objects to support later recognition, and that we do so not only on the basis of the physical similarity, but also the correlated appearance in time of the objects.
Resumo:
Most Internet search engines are keyword-based. They are not efficient for the queries where geographical location is important, such as finding hotels within an area or close to a place of interest. A natural interface for spatial searching is a map, which can be used not only to display locations of search results but also to assist forming search conditions. A map-based search engine requires a well-designed visual interface that is intuitive to use yet flexible and expressive enough to support various types of spatial queries as well as aspatial queries. Similar to hyperlinks for text and images in an HTML page, spatial objects in a map should support hyperlinks. Such an interface needs to be scalable with the size of the geographical regions and the number of websites it covers. In spite of handling typically a very large amount of spatial data, a map-based search interface should meet the expectation of fast response time for interactive applications. In this paper we discuss general requirements and the design for a new map-based web search interface, focusing on integration with the WWW and visual spatial query interface. A number of current and future research issues are discussed, and a prototype for the University of Queensland is presented. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
Under certain circumstances, external stimuli will elicit an involuntary shift of spatial attention, referred to as attentional capture. According to the contingent involuntary orienting account (Folk, Remington, & Johnston, 1992), capture is conditioned by top-down factors that set attention to respond involuntarily to stimulus properties relevant to one's behavioral goals. Evidence for this comes from spatial cuing studies showing that a spatial cuing effect is observed only when cues have goal-relevant properties. Here, we examine alternative, decision-level explanations of the spatial cuing effect that attribute evidence of capture to postpresentation delays in the voluntary allocation of attention, rather than to on-line involuntary shifts in direct response to the cue. In three spatial cuing experiments, delayed-allocation accounts were tested by examining whether items at the cued location were preferentially processed. The experiments provide evidence that costs and benefits in spatial cuing experiments do reflect the on-line capture of attention. The implications of these results for models of attentional control are discussed.
Resumo:
Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.
Resumo:
The human nervous system constructs a Euclidean representation of near (personal) space by combining multiple sources of information (cues). We investigated the cues used for the representation of personal space in a patient with visual form agnosia (DF). Our results indicated that DF relies predominantly on binocular vergence information when determining the distance of a target despite the presence of other (retinal) cues. Notably, DF was able to construct an Euclidean representation of personal space from vergence alone. This finding supports previous assertions that vergence provides the nervous system with veridical information for the construction of personal space. The results from the current study, together with those of others, suggest that: (i) the ventral stream is responsible for extracting depth and distance information from monocular retinal cues (i.e. from shading, texture, perspective) and (ii) the dorsal stream has access to binocular information (from horizontal image disparities and vergence). These results also indicate that DF was not able to use size information to gauge target distance, suggesting that intact temporal cortex is necessary for learned size to influence distance processing. Our findings further suggest that in neurologically intact humans, object information extracted in the ventral pathway is combined with the products of dorsal stream processing for guiding prehension. Finally, we studied the size-distance paradox in visual form agnosia in order to explore the cognitive use of size information. The results of this experiment were consistent with a previous suggestion that the paradox is a cognitive phenomenon.
Resumo:
Reaching out to grasp an object (prehension) is a deceptively elegant and skilled behavior. The movement prior to object contact can be described as having two components [1], the movement of the hand to an appropriate location for gripping the object, the transport component, and the opening and closing of the aperture between the fingers as they prepare to grip the target, the grasp component. The grasp component is sensitive to the size of the object, so that a larger grasp aperture is formed for wider objects [1]; the maximum grasp aperture (MGA) is a little wider than the width of the target object and occurs later in the movement for larger objects [1, 2]. We present a simple model that can account for the temporal relationship between the transport and grasp components, We report the results of an experiment providing empirical support for our rule of thumb. The model provides a simple, but plausible, account of a neural control strategy that has been the center of debate over the last two decades.
Resumo:
We present some applications of high-efficiency quantum interrogation (interaction-free measurement) for the creation of entangled states of separate atoms and of separate photons. The quantum interrogation of a quantum object in a superposition of object-in and object-out leaves the object and probe in an entangled state. The probe can then be further entangled with other objects in subsequent quantum interrogations. By then projecting out those cases in which the probe is left in a particular final state, the quantum objects can themselves be left in various entangled states. In this way, we show how to generate two-, three-, and higher-qubit entanglement between atoms and between photons. The effect of finite efficiency for the quantum interrogation is delineated for the various schemes.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of H2S --> SH + H have been investigated quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). Resonance energies, widths (rates), and product state distributions have been obtained. Both dissociation rates and product state distributions of SH show, strong fluctuations, indicating that the dissociation of H2S is essentially irregular. Statistical analysis of neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and product state distributions are compared to the predictions of quantum phase space theory.
Resumo:
Antimicrobial peptides occur in a diverse range of organisms from microorganisms to insects, plants and animals. Although they all have the common function of inhibiting or killing invading microorganisms they achieve this function using an extremely diverse range of structural motifs. Their sizes range from approximately 10-90 amino acids. Most carry an overall positive charge, reflecting a preferred mode of electrostatic interaction with negatively charged microbial membranes. This article describes the structural diversity of a representative set of antimicrobial peptides divided into five structural classes: those with agr-helical structure, those with bgr-sheet structure, those with mixed helical / bgr- sheet structure, those with irregular structure, and those incorporating a macrocyclic structure. There is a significant diversity in both the size and charge of molecules within each of these classes and between the classes. The common feature of their three-dimensional structures is, however, that they have a degree of amphipathic character in which there is separate localisation of hydrophobic regions and positively charged regions. An emerging trend amongst antimicrobial proteins is the discovery of more macrocyclic analogues. Cyclisation appears to impart an additional degree of stability on these molecules and minimizes proteolytic cleavage. In conclusion, there appear to be a number of promising opportunities for the development of novel clinically useful antimicrobial peptides based on knowledge of the structures of naturally occurring antimicrobial molecules.