922 resultados para Information processing
Resumo:
The attentional blink (AB) represents a fundamental limit of information processing. About 5-10 % of all subjects, however, do not show the AB. Because of the low base rate of these so-called non-blinkers, studies on mechanisms underlying non-blinkers' absent AB are extremely scant. The few existent studies found non-blinkers to be faster and more efficient in information processing compared to blinkers. A personality trait that has been linked previously to speed and efficiency of information processing as well as to the magnitude of the AB is impulsivity. Therefore, the present study investigated whether 15 non-blinkers and 15 blinkers differed from each other in functional and/or dysfunctional impulsivity. To obtain a better understanding of the underlying processing mechanisms, the P300 component in the event-related potential was recorded during performance on the AB task. Our results indicated higher functional impulsivity in non-blinkers compared to blinkers but no differences between the two groups in dysfunctional impulsivity. As indicated by shorter P300 latency, non-blinkers processed information faster than blinkers after the AB period but slower during the AB period. These speed effects, however, were not associated with functional impulsivity. Thus, impulsivity and speed of information processing appear to represent two rather independent sources for non-blinkers' absent AB
Resumo:
In this study we investigated whether synaesthesia is associated with a particular cognitive style. Cognitive style refers to preferred modes of information processing, such as a verbal style or a visual style. We reasoned that related to the enriched world of experiences created by synaesthesia, its association with enhanced verbal and visual memory, higher imagery and creativity, synaesthetes might show enhanced preference for a verbal as well as for a visual cognitive style compared to non-synaesthetes. In Study 1 we tested a large convenience sample of 1046 participants, who classified themselves as grapheme-color, sound-color, lexical-gustatory, sequence-space, or as non-synaesthetes. To assess cognitive style, we used the revised verbalizer-visualizer questionnaire (VVQ), which involves three independent cognitive style dimensions (verbal style, visual-spatial style, and vivid imagery style). The most important result was that those who reported grapheme-color synaesthesia showed higher ratings on the verbal and vivid imagery style dimensions, but not on the visual-spatial style dimension. In Study 2 we replicated this finding in a laboratory study involving 24 grapheme-color synaesthetes with objectively confirmed synaesthesia and a closely matched control group. Our results indicate that grapheme-color synaesthetes prefer both a verbal and a specific visual cognitive style. We suggest that this enhanced preference, probably together with the greater ease to switch between a verbal and a vivid visual imagery style, may be related to cognitive advantages associated with grapheme color synaesthesia such as enhanced memory performance and creativity.
Resumo:
More than a century ago, Galton and Spearman suggested that there was a functional relationship between sensory discrimination ability and intelligence. Studies have since been able to confirm a close relationship between general discrimination ability (GDA) and IQ. The aim of the present study was to assess whether this strong relationship between GDA and IQ could be due to working memory (WM) demands of GDA tasks. A sample of 140 children (seventy 9-year-olds and seventy 11-year-olds) was studied. Results showed that there was a significant overlap between WM, GDA and fluid intelligence. Furthermore, results also revealed that WM could not explain the relationship between GDA and fluid intelligence as such, but that it acted as a bottleneck of information processing, limiting the influence of GDA on the prediction of fluid intelligence. Specifically, GDA's influence on the prediction of intelligence was only visible when WM capacity was above a certain level.
Resumo:
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca2+ influx evoked by low-threshold Ca2+ spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (−50 mV), which suppressed these low-threshold Ca2+ spikes, induced no plasticity. The postsynaptic dendritic Ca2+ increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Resumo:
BACKGROUND: Research on comorbidity of psychiatric disorders identifies broad superordinate dimensions as underlying structure of psychopathology. While a syndrome-level approach informs diagnostic systems, a symptom-level approach is more likely to represent the dimensional components within existing diagnostic categories. It may capture general emotional, cognitive or physiological processes as underlying liabilities of different disorders and thus further develop dimensional-spectrum models of psychopathology. METHODS: Exploratory and confirmatory factor analyses were used to examine the structure of psychopathological symptoms assessed with the Brief Symptom Inventory in two outpatient samples (n=3171), including several correlated-factors and bifactor models. The preferred models were correlated with DSM-diagnoses. RESULTS: A model containing eight correlated factors for depressed mood, phobic fear, aggression, suicidal ideation, nervous tension, somatic symptoms, information processing deficits, and interpersonal insecurity, as well a bifactor model fit the data best. Distinct patterns of correlations with DSM-diagnoses identified a) distress-related disorders, i.e., mood disorders, PTSD, and personality disorders, which were associated with all correlated factors as well as the underlying general distress factor; b) anxiety disorders with more specific patterns of correlations; and c) disorders defined by behavioural or somatic dysfunctions, which were characterised by non-significant or negative correlations with most factors. CONCLUSIONS: This study identified emotional, somatic, cognitive, and interpersonal components of psychopathology as transdiagnostic psychopathological liabilities. These components can contribute to a more accurate description and taxonomy of psychopathology, may serve as phenotypic constructs for further aetiological research, and can inform the development of tailored general and specific interventions to treat mental disorders.
Resumo:
Dieser Beitrag beschäftigt sich kritisch mit dem von Wolfgang Schöllhorn seit 1999 propagierten Ansatz des differenziellen Lehrens und Lernens. Nach einer Einordnung in die historische bewegungswissenschaftliche Debatte um den Informationsverarbeitungsansatz und die dynamische Systemtheorie zeigen wir, dass die von Schöllhorn behaupteten Praxiskonsequenzen theoretisch nicht fundiert sind, dass die Abgrenzung zu konkurrierenden Lerntheorien lücken- und fehlerhaft ausfällt, dass die präsentierte empirische Befundlage auf höchst wackeligen Füßen steht und dass der Ansatz sich auch aus Praxissicht als nicht tragfähig erweist. Mit Blick auf fatale Konsequenzen sowohl für die Sportpraxis als auch für die Sportwissenschaft empfehlen wir, in zukünftigen Publikationen zum differenziellen Lernen auf fehlerhafte und theoretisch wie empirisch unbegründete Praxisempfehlungen zu verzichten.
Resumo:
Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated possible algorithms of control for the performance of the majority function, in which participants searched for and identified one of two alternative categories (left or right pointing arrows) as composing the majority in each stimulus set. We manipulated the amount (set size of 1, 3, and 5) and content (ratio of left and right pointing arrows within a set) of the inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to alternative algorithms (i.e., exhaustive or self-terminating search). The grouping search algorithm involves sampling and resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the implications of voluntary control via algorithms of mental operations.
Resumo:
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.
Resumo:
To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis.
Resumo:
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.
Resumo:
The task of encoding and processing complex sensory input requires many types of transsynaptic signals. This requirement is served in part by an extensive group of neurotransmitter substances which may include thirty or more different compounds. At the next level of information processing, the existence of multiple receptors for a given neurotransmitter appears to be a widely used mechanism to generate multiple responses to a given first messenger (Snyder and Goodman, 1980). Despite the wealth of published data on GABA receptors, the existence of more than one GABA receptor was in doubt until the mid 1980's. Presently there is still disagreement on the number of types of GABA receptors, estimates for which range from two to four (DeFeudis, 1983; Johnston, 1985). Part of the problem in evaluating data concerning multiple receptor types is the lack of information on the number of gene products and their subsequent supramolecular organization in different neurons. In order to evaluate the question concerning the diversity of GABA receptors in the nervous system, we must rely on indirect information derived from a wide variety of experimental techniques. These include pharmacological binding studies to membrane fractions, electrophysiological studies, localization studies, purification studies, and functional assays. Almost all parts of the central and peripheral nervous system use GABA as a neurotransmitter, and these experimental techniques have therefore been applied to many different parts of the nervous system for the analysis of GABA receptor characteristics. We are left with a large amount of data from a wide variety of techniques derived from many parts of the nervous system. When this project was initiated in 1983, there were only a handful of pharmacological tools to assess the question of multiple GABA receptors. The approach adopted was to focus on a single model system, using a variety of experimental techniques, in order to evaluate the existence of multiple forms of GABA receptors. Using the in vitro rabbit retina, a combination of pharmacological binding studies, functional release studies and partial purification studies were undertaken to examine the GABA receptor composition of this tissue. Three types of GABA receptors were observed: Al receptors coupled to benzodiazepine and barbiturate modulation, and A2 or uncoupled GABA-A receptors, and GABA-B receptors. These results are evaluated and discussed in light of recent findings by others concerning the number and subtypes of GABA receptors in the nervous system. ^
Resumo:
Evidence suggests a strong relation between superior motor performance and the duration of the last fixation before movement initiation (called Quiet Eye, QE). Although this phenomenon proves to be quite robust, to date, only little is known about its functional role. Therefore, in two experiments, a novel paradigm is introduced, testing the QE as independent variable by experimentally manipulating the duration of the last fixation in a throwing task. In addition, this paradigm allowed for the manipulation of the predictability of the target position. Results of the first study revealed an increase in throwing accuracy as function of experimentally prolonged QE durations. Thus, the assumption that the QE does not surface as a mere by-product of superior performance could be confirmed. In the second study, this dependency was found only under high task-demand conditions in which the target position was not predictable. This finding confirms the hypothesis that it is the optimization of information processing which serves as the crucial mechanisms behind QE effects.
Resumo:
Currently, dramatic changes are happening in the IS development industry. The incumbent system developers (hubs) are embracing partnerships with less well established companies (spokes), acting in specific niches. This paper seeks to establish a better understanding of the motives for this strategy. Relying on existing work on strategic alliance formation, it is argued that partnering is particularly attractive, if these small companies possess certain capabilities that are difficult to obtain through other arrangements than partnering. Again drawing on the literature, three categories of capabilities are identified: the capability to innovate within their niche, the capability to provide a specific functionality that can be integrated with the incumbents’ systems, and the capability to address novel markets. These factors are analyzed through a case study. The case represents a market leader in the global IS development industry, which fosters a network of smaller partner firms. The study reveals that temporal dynamics between the identified factors are playing a dominant role in these networks. A cyclical partnership model is developed that attempts to explain the life cycle of a partnership within such a network.
Resumo:
Bioinformational theory has been proposed by Lang (1979a), who suggests that mental images can be understood as products of the brain's information processing capacity. Imagery involves activation of a network of propositionally coded information stored in long-term memory. Propositions concerning physiological and behavioral responses provide a prototype for overt behavior. Processing of response information is associated with somatovisceral arousal. The theory has implications for imagery rehearsal in sport psychology and can account for a variety of findings in the mental practice literature. Hypotheses drawn from bioinformational theory were tested. College athletes imagined four scenes during which their heart rates were recorded. Subjects tended to show increases in heart rate when imagining scenes with which they had personal experience and which would involve cardiovascular activation if experienced in real life. Nonsignificant heart rate changes were found when the scene involved activation but was one with which subjects did not have personal experience.
Resumo:
The paper argues for a distinction between sensory-and conceptual-information storage in the human information-processing system. Conceptual information is characterized as meaningful and symbolic, while sensory information may exist in modality-bound form. Furthermore, it is assumed that sensory information does not contribute to conscious remembering and can be used only in data-driven process reptitions, which can be accompanied by a kind of vague or intuitive feeling. Accordingly, pure top-down and willingly controlled processing, such as free recall, should not have any access to sensory data. Empirical results from different research areas and from two experiments conducted by the authors are presented in this article to support these theoretical distinctions. The experiments were designed to separate a sensory-motor and a conceptual component in memory for two-digit numbers and two-letter items, when parts of the numbers or items were imaged or drawn on a tablet. The results of free recall and recognition are discussed in a theoretical framework which distinguishes sensory and conceptual information in memory.