952 resultados para Immunological anomalies
Resumo:
Anti-neutrophil cytoplasmic antibodies (ANCA) are diagnostic markers for systemic vasculitis. They are classically I detected by an indirect immunofluorescence test using normal donor neutrophils as substrate. This assay lacks antigenic specificity and is not quantitative. The 'EC/BCR Project for ANCA Assay Standardization' is an international collaboration study with the aim to develop and standardize solid phase assays for ANCA detection. In this part of the study the isolation and characterization of proteinase-3 and myeloperoxidase, the two main target molecules for ANCA, and the development and standardization of ELISAs with these antigens are described. Six laboratories successfully isolated purified proteinase-3 preparations that could be used. Three of these preparations, together with one myeloperoxidase preparation, were subsequently used for ANCA testing by ELISA. The ELISA technique was standardized in two rounds of testing in the 14 participating laboratories. The coefficient of variation of these new assays decreased from values of approx. 50% in the first round to approx. 20% in the second round. We conclude that purified proteinase-3 and myeloperoxidase can be used in standardized ELISAs for ANCA detection. Whether such procedures offer advantages over the IIF test will be determined in a prospective clinical study.
Resumo:
This paper describes a methodology for detecting anomalies from sequentially observed and potentially noisy data. The proposed approach consists of two main elements: 1) filtering, or assigning a belief or likelihood to each successive measurement based upon our ability to predict it from previous noisy observations and 2) hedging, or flagging potential anomalies by comparing the current belief against a time-varying and data-adaptive threshold. The threshold is adjusted based on the available feedback from an end user. Our algorithms, which combine universal prediction with recent work on online convex programming, do not require computing posterior distributions given all current observations and involve simple primal-dual parameter updates. At the heart of the proposed approach lie exponential-family models which can be used in a wide variety of contexts and applications, and which yield methods that achieve sublinear per-round regret against both static and slowly varying product distributions with marginals drawn from the same exponential family. Moreover, the regret against static distributions coincides with the minimax value of the corresponding online strongly convex game. We also prove bounds on the number of mistakes made during the hedging step relative to the best offline choice of the threshold with access to all estimated beliefs and feedback signals. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality, as well as on the Enron email dataset. © 1963-2012 IEEE.
Resumo:
Avian malaria and related haematozoa are nearly ubiquitous parasites that can impose fitness costs of variable severity and may, in some cases, cause substantial mortality in their host populations. One example of the latter, the emergence of avian malaria in the endemic avifauna of Hawaii, has become a model for understanding the consequences of human-mediated disease introduction. The drastic declines of native Hawaiian birds due to avian malaria provided the impetus for examining more closely several aspects of host-parasite interactions in this system. Host-specificity is an important character determining the extent to which a parasite may emerge. Traditional parasite classification, however, has used host information as a character in taxonomical identification, potentially obscuring the true host range of many parasites. To improve upon previous methods, I first developed molecular tools to identify parasites infecting a particular host. I then used these molecular techniques to characterize host-specificity of parasites in the genera Plasmodium and Haemoproteus. I show that parasites in the genus Plasmodium exhibit low specificity and are therefore most likely to emerge in new hosts in the future. Subsequently, I characterized the global distribution of the single lineage of P. relictum that has emerged in Hawaii. I demonstrate that this parasite has a broad host distribution worldwide, that it is likely of Old World origin and that it has been introduced to numerous islands around the world, where it may have been overlooked as a cause of decline in native birds. I also demonstrate that morphological classification of P. relictum does not capture differences among groups of parasites that appear to be reproductively isolated based on molecular evidence. Finally, I examined whether reduced immunological capacity, which has been proposed to explain the susceptibility of Hawaiian endemics, is a general feature of an "island syndrome" in isolated avifauna of the remote Pacific. I show that, over multiple time scales, changes in immune response are not uniform and that observed changes probably reflect differences in genetic diversity, parasite exposure and life history that are unique to each species.
Resumo:
BACKGROUND: The rate of emergence of human pathogens is steadily increasing; most of these novel agents originate in wildlife. Bats, remarkably, are the natural reservoirs of many of the most pathogenic viruses in humans. There are two bat genome projects currently underway, a circumstance that promises to speed the discovery host factors important in the coevolution of bats with their viruses. These genomes, however, are not yet assembled and one of them will provide only low coverage, making the inference of most genes of immunological interest error-prone. Many more wildlife genome projects are underway and intend to provide only shallow coverage. RESULTS: We have developed a statistical method for the assembly of gene families from partial genomes. The method takes full advantage of the quality scores generated by base-calling software, incorporating them into a complete probabilistic error model, to overcome the limitation inherent in the inference of gene family members from partial sequence information. We validated the method by inferring the human IFNA genes from the genome trace archives, and used it to infer 61 type-I interferon genes, and single type-II interferon genes in the bats Pteropus vampyrus and Myotis lucifugus. We confirmed our inferences by direct cloning and sequencing of IFNA, IFNB, IFND, and IFNK in P. vampyrus, and by demonstrating transcription of some of the inferred genes by known interferon-inducing stimuli. CONCLUSION: The statistical trace assembler described here provides a reliable method for extracting information from the many available and forthcoming partial or shallow genome sequencing projects, thereby facilitating the study of a wider variety of organisms with ecological and biomedical significance to humans than would otherwise be possible.
Resumo:
We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the electromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement near the guided mode. The theory applies to structures in which losses are negligible and to very general geometries of the unit cell. It is based on boundary-integral representations of the electromagnetic fields. These depend on the frequency and on the Bloch wave vector and provide a complex-analytic connection in these parameters between generalized scattering states and guided slab modes. The perturbation of three coincident zeros-those of the dispersion relation for slab modes, the reflection constant, and the transmission constant-is central to calculating transmission anomalies both for lossless dielectric materials and for perfect metals.
Resumo:
CD8+ T cells are associated with long term control of virus replication to low or undetectable levels in a population of HIV+ therapy-naïve individuals known as virus controllers (VCs; <5000 RNA copies/ml and CD4+ lymphocyte counts >400 cells/µl). These subjects' ability to control viremia in the absence of therapy makes them the gold standard for the type of CD8+ T-cell response that should be induced with a vaccine. Studying the regulation of CD8+ T cells responses in these VCs provides the opportunity to discover mechanisms of durable control of HIV-1. Previous research has shown that the CD8+ T cell population in VCs is heterogeneous in its ability to inhibit virus replication and distinct T cells are responsible for virus inhibition. Further defining both the functional properties and regulation of the specific features of the select CD8+ T cells responsible for potent control of viremia the in VCs would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies.
Here we discuss the progress made in elucidating the features and regulation of CD8+ T cell response in virus controllers. We first detail the development of assays to quantify CD8+ T cells' ability to inhibit virus replication. This includes the use of a multi-clade HIV-1 panel which can subsequently be used as a tool for evaluation of T cell directed vaccines. We used these assays to evaluate the CD8+ response among cohorts of HIV-1 seronegative, HIV-1 acutely infected, and HIV-1 chronically infected (both VC and chronic viremic) patients. Contact and soluble CD8+ T cell virus inhibition assays (VIAs) are able to distinguish these patient groups based on the presence and magnitude of the responses. When employed in conjunction with peptide stimulation, the soluble assay reveals peptide stimulation induces CD8+ T cell responses with a prevalence of Gag p24 and Nef specificity among the virus controllers tested. Given this prevalence, we aimed to determine the gene expression profile of Gag p24-, Nef-, and unstimulated CD8+ T cells. RNA was isolated from CD8+ T-cells from two virus controllers with strong virus inhibition and one seronegative donor after a 5.5 hour stimulation period then analyzed using the Illumina Human BeadChip platform (Duke Center for Human Genome Variation). Analysis revealed that 565 (242 Nef and 323 Gag) genes were differentially expressed in CD8+ T-cells that were able to inhibit virus replication compared to those that could not. We compared the differentially expressed genes to published data sets from other CD8+ T-cell effector function experiments focusing our analysis on the most recurring genes with immunological, gene regulatory, apoptotic or unknown functions. The most commonly identified gene in these studies was TNFRSF9. Using PCR in a larger cohort of virus controllers we confirmed the up-regulation of TNFRSF9 in Gag p24 and Nef-specific CD8+ T cell mediated virus inhibition. We also observed increase in the mRNA encoding antiviral cytokines macrophage inflammatory proteins (MIP-1α, MIP-1αP, MIP-1β), interferon gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), and recently identified lymphotactin (XCL1).
Our previous work suggests the CD8+ T-cell response to HIV-1 can be regulated at the level of gene regulation. Because RNA abundance is modulated by transcription of new mRNAs and decay of new and existing RNA we aimed to evaluate the net rate of transcription and mRNA decay for the cytokines we identified as differentially regulated. To estimate rate of mRNA synthesis and decay, we stimulated isolated CD8+ T-cells with Gag p24 and Nef peptides adding 4-thiouridine (4SU) during the final hour of stimulation, allowing for separation of RNA made during the final hour of stimulation. Subsequent PCR of RNA isolated from these cells, allowed us to determine how much mRNA was made for our genes of interest during the final hour which we used to calculate rate of transcription. To assess if stimulation caused a change in RNA stability, we calculated the decay rates of these mRNA over time. In Gag p24 and Nef stimulated T cells , the abundance of the mRNA of many of the cytokines examined was dependent on changes in both transcription and mRNA decay with evidence for potential differences in the regulation of mRNA between Nef and Gag specific CD8+ T cells. The results were highly reproducible in that in one subject that was measured in three independent experiments the results were concordant.
This data suggests that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells by enabling rapid recall of anti-HIV-1 effector functions, namely the production and increased stability of antiviral cytokines. We have started to uncover the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, in turn, enhancing our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.
Resumo:
Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing.
Resumo:
Antigenically evolving pathogens such as influenza viruses are difficult to control owing to their ability to evade host immunity by producing immune escape variants. Experimental studies have repeatedly demonstrated that viral immune escape variants emerge more often from immunized hosts than from naive hosts. This empirical relationship between host immune status and within-host immune escape is not fully understood theoretically, nor has its impact on antigenic evolution at the population level been evaluated. Here, we show that this relationship can be understood as a trade-off between the probability that a new antigenic variant is produced and the level of viraemia it reaches within a host. Scaling up this intra-host level trade-off to a simple population level model, we obtain a distribution for variant persistence times that is consistent with influenza A/H3N2 antigenic variant data. At the within-host level, our results show that target cell limitation, or a functional equivalent, provides a parsimonious explanation for how host immune status drives the generation of immune escape mutants. At the population level, our analysis also offers an alternative explanation for the observed tempo of antigenic evolution, namely that the production rate of immune escape variants is driven by the accumulation of herd immunity. Overall, our results suggest that disease control strategies should be further assessed by considering the impact that increased immunity--through vaccination--has on the production of new antigenic variants.
Resumo:
Stimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.
Resumo:
In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N(G)-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor - α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.
Resumo:
Preliminary studies on the long-term effects of prenatal and early postnatal irradiation on the immune response to arsonate were performed using A/J mice. Pregnant mice were irradiated (0·5 Gy, X-rays) or sham-irradiated on a single occasion during gestation (between day 5 and 18 post-conception). Alternatively, newborn mice received the same treatment between day 2 and 7 after birth. Mice were immunized with keyhole limpet haemocyanin-arsonate (KLH-Ars) in adjuvant from 2 months after birth. The levels of specific antibodies to arsonate (anti-Ars) were measured by radioimmunoassay. In addition, the Ars-related cross-reactive idiotype (CRIA) was measured by the haemagglutination technique. In the primary response the titre of anti-Ars was reduced in animals that had been irradiated between day 12 and 15 of gestation. In the second response, in contrast, they had increased levels of anti-Ars. After immunization with KLH-Ars, high levels of CRIA were observed in all groups. However, in mice irradiated 18-20 days after conception the level of CRIA was often much higher than the level of anti-Ars, indicating that a large proportion of the CRIA-positive molecules were not specific for Ars. Thus, in this particular case, some specificity of the immune response was lost after irradiation. The expression of recurrent idiotypes may be a sensitive indicator of immunological perturbations after irradiation. © 1988 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted.
Resumo:
Real-time polymerase chain reaction (PCR) has recently been described as a new tool to measure and accurately quantify mRNA levels. In this study, we have applied this technique to evaluate cytokine mRNA synthesis induced by antigenic stimulation with purified protein derivative (PPD) or heparin-binding haemagglutinin (HBHA) in human peripheral blood mononuclear cells (PBMC) from Mycobacterium tuberculosis-infected individuals. Whereas PPD and HBHA optimally induced IL-2 mRNA after respectively 8 and 16 to 24 h of in vitro stimulation, longer in vitro stimulation times were necessary for optimal induction of interferon-gamma (IFN-gamma) mRNA, respectively 16 to 24 h for PPD and 24 to 96 h for HBHA. IL-13 mRNA was optimally induced by in vitro stimulation after 16-48 h for PPD and after 48 to 96 h for HBHA. Comparison of antigen-induced Th1 and Th2 cytokines appears, therefore, valuable only if both cytokine types are analysed at their optimal time point of production, which, for a given cytokine, may differ for each antigen tested. Results obtained by real-time PCR for IFN-gamma and IL-13 mRNA correlated well with those obtained by measuring the cytokine concentrations in cell culture supernatants, provided they were high enough to be detected. We conclude that real-time PCR can be successfully applied to the quantification of antigen-induced cytokine mRNA and to the evaluation of the Th1/Th2 balance, only if the kinetics of cytokine mRNA appearance are taken into account and evaluated for each cytokine measured and each antigen analysed.
Resumo:
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Resumo:
In this paper, we have considered the problem of selection of available repertoires. With Ab2 as immunogens, we have used the idiotypic cascade to explore potential repertoires. Our results suggest that potential idiotypic repertoires are more or less the same within a species or between different species. A given idiotype "à la Oudin" can become a recurrent one within the same outbred species or within different species. Similarly, an intrastrain crossreactive idiotype can be induced in other strains, even though there is a genetic disparity between these strains. The structural basis of this phenomenon has been explored. We next examined results showing the loss and gain of recurrent idiotypes without any intentional idiotypic manipulation. A recurrent idiotype can be lost in a syngeneic transfer and a private one can become recurrent by changing the genetic background. The change of available idiotypic repertoires at the B cell level has profound influences on the idiotypic repertoires of suppressor T cells. All these results imply that idiotypic games are played by the immune system itself, a strong suggestion that the immune system is a functional idiotypic network.
Resumo:
OBJECTIVES: The biological effects of resin-modified glass-ionomer cements as used in clinical dentistry are described, and the literature reviewed on this topic. METHODS: Information on resin-modified glass-ionomers and on 2-hydroxyethyl methacrylate (HEMA), the most damaging substance released by these materials, has been collected from over 50 published papers. These were mainly identified through Scopus. RESULTS: HEMA is known to be released from these materials and has a variety of damaging biological properties, ranging from pulpal inflammation to allergic contact dermatitis. These are therefore potential hazards from resin-modified glass-ionomers. However, clinical results with these materials that have been reported to date are generally positive. CONCLUSIONS/SIGNIFICANCE: Resin-modified glass-ionomers cannot be considered biocompatible to nearly the same extent as conventional glass-ionomers. Care needs to be taken with regard to their use in dentistry and, in particular, dental personnel may be at risk from adverse effects such as contact dermatitis and other immunological responses.