903 resultados para Hydrogen-bonding Interactions
Resumo:
The rare mixed copper-zinc phosphate mineral veszelyite (Cu,Zn)2Zn(PO4)(OH)3·2H2O space group P21/c, a = 7.5096(2), b = 10.2281(2), c = 9.8258(2) Å, β = 103.3040(10)°, V = 734.45(3) Å3 was investigated by in situ temperature-dependent single-crystal X-ray structure refinements. The atomic arrangement of veszelyite consists of an alternation of octahedral and tetrahedral sheets. The Jahn-Teller distorted CuO6 octahedra form sheets with eight-membered rings. The tetrahedral sheet composed of PO4 and ZnO3(OH) tetrahedra shows strong topological similarities to that of cavansite, gismondine, and kipushite.Diffraction data of a sample from Zdravo Vrelo, near Kreševo (Bosnia and Herzegovina) have been measured in steps of 25 up to 225 °C. Hydrogen positions and the hydrogen-bond system were determined experimentally from the structure refinements of data collected up to 125 °C. At 200 °C, the hydrogen-bonding scheme was inferred from bond-valence calculations and donor-acceptor distances. The hydrogen-bond system connects the tetrahedral sheet to the octahedral sheet and also braces the Cu sheet.At 150 °C, the H2O molecule at H2O2 was released and the Cu coordination (Cu1 and Cu2) decreased from originally six- to fivefold. Cu1 has a square planar coordination by four OH groups and an elongate distance to O3, whereas Cu2 has the Jahn-Teller characteristic elongate bond to H2O1. The unit-cell volume decreased 7% from originally 734.45(3) to 686.4(4) Å3 leading to a formula with 1 H2O pfu. The new phase observed above 150 °C is characterized by an increase of the c axis and a shortening of the b axis. The bending of T-O-T angles causes an increasing elliptical shape of the eight-membered rings in the tetrahedral and octahedral sheets. Moreover a rearrangement of the hydrogen-bond system was observed.At 225 °C, the structure degrades to an X-ray amorphous residual due to release of the last H2O molecule at H2O1. The stronger Jahn-Teller distortion of Cu1 relative to Cu2 suggests that Cu1 is fully occupied by Cu, whereas Cu2 bears significant Zn. H2O1 is the fifth ligand of Cu2. Zn at Cu2 is not favorable to adopt planar fourfold coordination. Thus, if the last water molecule is expelled the structure is destabilized.This study contributes to understanding the dehydration mechanism and thermal stability of supergene minerals characterized by Jahn-Teller distorted octahedra with mixed Cu, Zn occupancy.
Resumo:
The synthesis and incorporation into oligonucleotides of C-nucleosides containing the two aromatic, non-hydrogen-bonding nucleobase substitutes biphenyl (I) and bipyridyl (Y) are described. Their homo- and hetero-recognition properties in different sequential arrangements were then investigated via UV-melting curve analysis, gel mobility assays, CD- and NMR spectroscopy. An NMR analysis of a dodecamer duplex containing one biphenyl pair in the center, as well as CD data on duplexes with multiple insertions provide further evidence for the zipper-like interstrand stacking motif that we proposed earlier based on molecular modeling. UV-thermal melting experiments with duplexes containing one to up to seven I- or Y base pairs revealed a constant increase in T(m) in the case of I and a constant decrease for Y. Mixed I/Y base pairs lead to stabilities in between the homoseries. Insertion of alternating I/abasic site- or Y/abasic site pairs strongly decreases the thermal stability of duplexes. Asymmetric distribution of I- or Y residues on either strand of the duplex were also investigated in this context. Duplexes with three natural base pairs at both ends and 50 % of I pairs in the center are still readily formed, while duplexes with blunt ended I pairs tend to aggregate unspecifically. Duplexes with one natural overhang at the end of a I-I base pair tract can both aggregate or form ordered duplexes, depending on the nature of the natural bases in the overhang
Resumo:
The crystal structure of the resting state of cytochrome P450cam (CYP101), a heme thiolate protein, shows a cluster of six water molecules in the substrate binding pocket, one of which is coordinating to iron(III) as sixth ligand. The resting state is low-spin and changes to high-spin when substrate camphor binds and H2O is removed. In contrast to the protein, previously synthesised enzyme models such as H2O[BOND]FeIII(porph)(ArS−) were shown to be purely high-spin. Iron(S−)porphyrins with different distal sites mimicking proposed remote effects have been prepared and studied by cw-EPR. The results indicate that the low-spin of the resting state of P450cam is due to the fact that the water molecule coordinating to iron has an OH−-like character because of hydrogen bonding and polarisation of the water cluster, respectively.
Resumo:
In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).
Resumo:
2-Aminopurine (2AP) is a fluorescent isomer of adenine and has a fluorescence lifetime of ~11 ns in water. It is widely used in biochemical settings as a site-specific fluorescent probe of DNA and RNA structure and base-flipping and -folding. These assays assume that 2AP is intrinsically strongly fluorescent. Here, we show this not to be the case, observing that gas-phase, jet-cooled 2-aminopurine and 9-methyl-2-aminopurine have very short fluorescence lifetimes (156 ps and 210 ps, respectively); they are, to all intents and purposes, non-fluorescent. We find that the lifetime of 2-aminopurine increases dramatically when it is part of a hydrate cluster, 2AP·(H2O)n, where n = 1–3. Not only does it depend on the presence of water molecules, it also depends on the specific hydrogen-bonding site to which they attach and on the number of H2O molecules at that site. We selectively microhydrate 2-aminopurine at its sugar-edge, cis-amino or trans-amino sites and see that its fluorescence lifetime increases by 4, 50 and 95 times (to 14.5 ns), respectively.
Resumo:
The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; Haberli, A.; Leumann C.J. Angew. Chem. Int. Ed. 2001, 40, 3012-3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP:dBP base couple in a DNA duplex is similar to a dG:dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn2+, Cu2+, Zn2+, Ni2+) tested
Resumo:
La contaminación de suelos con hidrocarburos de petróleo en México es un problema que se ha vuelto muy común en nuestros días, debido principalmente a derrames, así como a las actividades propias de la industria petrolera. Algunos suelos contaminados, principalmente en el sureste de México, contienen concentraciones de hidrocarburos hasta de 450,000 mg/kg. Por dichas razones, una de las preocupaciones de las autoridades ambientales es el desarrollo de tecnologías eficientes y económicamente factibles que permitan la eliminación de este tipo de contaminantes. El saneamiento del sitio se puede lograr a través de diversos procedimientos, como son la aplicación de métodos físicos, químicos y biológicos (o combinaciones de ellas). La elección de un método depende de la naturaleza del contaminante, su estado físico, concentración, tipo de suelo, espacio físico disponible, tiempo destinado para su tratamiento, así como de los recursos económicos disponibles. Previa a la aplicación de la tecnología es necesario la realización de un diagnóstico de la contaminación del suelo, con el fin de conocer el tipo, concentración y distribución de los contaminantes presentes, así como el volumen de suelo a tratar, las condiciones climáticas de la zona, y características físicas del lugar (vías de acceso y servicios, entre otros). En la presente tesis, el empleo de surfactantes, se ha propuesto como una técnica para incrementar la movilidad de contaminantes orgánicos hidrofóbicos (HOCs) como hidrocarburos totales del petróleo (HTPs), bifenilos policlorados (PCBs), Benceno, Tolueno, Xilenos, explosivos, clorofenoles, pesticidas, entre otros, y así facilitar su degradación. Los surfactantes debido a que reducen la tensión superficial del agua, son moléculas formadas por grupos polares hidrofílicos y largas cadenas carbonadas hidrofóbicas. Sus grupos polares forman puentes hidrógeno con las moléculas de agua, mientras que las cadenas carbonadas se asocian a los hidrocarburos debido a interacciones hidrofóbicas que estos presentan. En soluciones acuosas, los surfactantes forman estructuras esféricas organizadas llamadas micelas. La solubilización de los contaminantes se lleva a cabo solamente cuando se forma la fase micelar, la cual se obtiene cuando la concentración del surfactante es superior a la concentración micelar crítica (CMC), es decir, arriba de la concentración de la cual el monómero se comienza a auto-agregar. La eficiencia de desorción de diésel por un surfactante depende de su naturaleza, de la dosis empleada, de la hidrofobicidad del contaminante, de la interacción surfactante-suelo y del tiempo de contacto surfactante-suelo. Sin embargo, la mejor eficiencia de desorción no está siempre relacionada con la mejor eficiencia de movilidad o solubilidad, debido principalmente a que el empleo de una alta concentración de surfactante puede inhibir la movilización. De acuerdo con información proporcionada por la Procuraduría Federal de Protección al Ambiente (PROFEPA), a la fecha no se ha llevado a cabo en México ninguna restauración de sitios específicamente contaminados con diésel, la técnica de lavado de suelos. Por lo anterior existe la necesidad de emplear la técnica de lavado de suelos ex situ. Específicamente en el suelo extraído de la ex refinería 18 de marzo ubicada en el Distrito Federal México y empleando una solución de surfactantes con agua desionizada, la cual consiste ponerlos en contacto con el suelo contaminado con diésel por medio de columnas de lavado cilíndricas, para lograr la remoción del contaminante. Se emplearon como surfactantes el lauril sulfato de sodio, lauril éter sulfato de sodio y Glucopon AV-100 a diferentes concentraciones de 0.5 a 4.0 [g/L], lográndose obtener una eficiencia del 80 % con este último surfactante. El lavado de suelos contaminados con diésel empleado surfactantes, es una tecnología que requiere que se profundice en el estudio de algunas variables como son el tipo de surfactante, concentración, tiempo de lavado, fenómenos de difusión, desorción, propiedades termodinámicas, entre otros. Los cuales determinarán el éxito o fracaso de la técnica empleada. Nowadays, soil pollution with oil in Mexico is a very common issue due mainly to both oil spill and oil activities. For example, mainly in the southeast area of Mexico, polluted soil contains high concentrations of hydrocarbons, up to 450,000 mg/kg. For these reasons, enviromental authorities have the concern in developing economically feasible and efficient technology that allow the elimination of these type of contaminants. The sanitation in sites can be achieved through several procedures such as physical, chemical and biological methods (or a combination among them). The choice of a method depends on the nature and physical state of the contaminant, the concentration, type of soil, physical space available, time consumption and financial resources. Before any technological application, a diagnostic of the polluted soil is necessary in order to know the type, concentration and distribution of contaminants as well as the soil volume, climatic conditions and physical features of the place (access routes and services, among others). In this thesis, surfactants has been proposed as a technique to increase the mobility of hydrophobic-organic contaminants (HOCs), e.g. total hydrocarbons of petroleum, polychlorinated biphenyls, benzene, toluene, xylenes, explosives, chlorophenols, pesticides, among others, and, hence, to facilitate degradation. Since surfactants reduce the water surface tension, they are molecules comprised of hydrophilic polar groups and long-hydrophobic carbon chains. Surfactant’s polar groups form hydrogen bonding with water molecules while carbon chains, i.e. hydrocarbon chains, have hydrophobic interactios. In aqueous solutions, surfactants form self-organised spherical structures called micelles. The solubilisation of contaminants is carried out only when the micellar phase is formed. This is obtained when the surfactant concentration is higher than the crítical micelle concentration (CMC), i.e. above the concentration where the surfactant monomer begins to self-aggregate. The diesel efficiency desorption by surfactants depends on their nature, the dose use, the contaminant hydrophobicity, the surfactant-soil interaction and the contact time with surfactant soil. However, the best desorption is not always related with the best either mobility or solubility efficiency since high concentration of surfactant can inhibit mobilisation. According to information of the Federal Bureau of Environmental Protection (PROFEPA), up today, there is not any restauration of diesel-polluted sites using the washing-soil technique. Due to the above, there exist the necessity of employing the waching-soil technique ex situ. More specifically, a sample soil from the oil-refinery of “18 de marzo” in Mexico city was extracted and a surfactant solution with deionised water was put in contact with the diesel contaminated soil by means of cylindrical waching columns in order to remove the contaminant. The surfactants employed in this work were sodium lauryl sulfate, sodium lauryl ether sulfate and Glucopon AV-100 at different concentrations of 0.5 to 4 [g/L], obtaining a efficiency of 80 % with this last surfactant. The washing of diesel-polluted soil using surfactants is a technology which requires a deeper study of some variables such as the type of surfactant, concentration, washing time, difusión phenomena, desorption, thermodynamic properties, among others. These parameters determine the succes or failure of the employed technique.
Resumo:
Scytalone dehydratase (EC 4.2.1.94) catalyzes the dehydration of two important intermediates in the biosynthesis of melanin, and it functions without metal ions or any cofactors. Using molecular orbital theory, we have examined the role of a critical water molecule in the mechanism of scytalone dehydratase. The water, together with an internal hydrogen bonding, contributes significantly to the stabilization of the transition state (or the enolate intermediate). The role of two active site tyrosines (Tyr-50 and Tyr-30) is (i) to hold the critical water in place so that it may stabilize the transition state without much structural rearrangement during the catalytic reaction, and (ii) to polarize the water, making it a better general acid. The stereochemistry of the scytalone dehydratase-catalyzed dehydration is also discussed.
Resumo:
As a step toward understanding their functional role, the low frequency vibrational motions (<300 cm−1) that are coupled to optical excitation of the primary donor bacteriochlorophyll cofactors in the reaction center from Rhodobacter sphaeroides were investigated. The pattern of hydrogen-bonding interaction between these bacteriochlorophylls and the surrounding protein was altered in several ways by mutation of single amino acids. The spectrum of low frequency vibrational modes identified by femtosecond coherence spectroscopy varied strongly between the different reaction center complexes, including between different mutants where the pattern of hydrogen bonds was the same. It is argued that these variations are primarily due to changes in the nature of the individual modes, rather than to changes in the charge distribution in the electronic states involved in the optical excitation. Pronounced effects of point mutations on the low frequency vibrational modes active in a protein-cofactor system have not been reported previously. The changes in frequency observed indicate a strong involvement of the protein in these nuclear motions and demonstrate that the protein matrix can increase or decrease the fluctuations of the cofactor along specific directions.
Resumo:
The semiempirical PM3 method, calibrated against ab initio HF/6–31+G(d) theory, has been used to elucidate the reaction of 1,2-dichloroethane (DCE) with the carboxylate of Asp-124 at the active site of haloalkane dehalogenase of Xanthobacter autothropicus. Asp-124 and 13 other amino acid side chains that make up the active site cavity (Glu-56, Trp-125, Phe-128, Phe-172, Trp-175, Leu-179, Val-219, Phe-222, Pro-223, Val-226, Leu-262, Leu-263, and His-289) were included in the calculations. The three most significant observations of the present study are that: (i) the DCE substrate and Asp-124 carboxylate, in the reactive ES complex, are present as an ion-molecule complex with a structure similar to that seen in the gas-phase reaction of AcO− with DCE; (ii) the structures of the transition states in the gas-phase and enzymatic reaction are much the same where the structure formed at the active site is somewhat exploded; and (iii) the enthalpies in going from ground states to transition states in the enzymatic and gas-phase reactions differ by only a couple kcal/mol. The dehalogenase derives its catalytic power from: (i) bringing the electrophile and nucleophile together in a low-dielectric environment in an orientation that allows the reaction to occur without much structural reorganization; (ii) desolvation; and (iii) stabilizing the leaving chloride anion by Trp-125 and Trp-175 through hydrogen bonding.
Resumo:
Hydration forces are thought to result from the energetic cost of water rearrangement near macromolecular surfaces. Raman spectra, collected on the same collagen samples on which these forces were measured, reveal a continuous change in water hydrogen-bonding structure as a function of separation between collagen triple helices. The varying spectral parameters track the force-distance curve. The energetic cost of water “restructuring,” estimated from the spectra, is consistent with the measured energy of intermolecular interaction. These correlations support the idea that the change in water structure underlies the exponentially varying forces seen in this system at least over the 13–18-Å range of interaxial separations.
Resumo:
A key step in the conversion of solar energy into chemical energy by photosynthetic reaction centers (RCs) occurs at the level of the two quinones, QA and QB, where electron transfer couples to proton transfer. A great deal of our understanding of the mechanisms of these coupled reactions relies on the seminal work of Okamura et al. [Okamura, M. Y., Isaacson, R. A., & Feher, G. (1975) Proc. Natl. Acad. Sci. USA 88, 3491–3495], who were able to extract with detergents the firmly bound ubiquinone QA from the RC of Rhodobacter sphaeroides and reconstitute the site with extraneous quinones. Up to now a comparable protocol was lacking for the RC of Rhodopseudomonas viridis despite the fact that its QA site, which contains 2-methyl-3-nonaprenyl-1,4-naphthoquinone (menaquinone-9), has provided the best x-ray structure available. Fourier transform infrared difference spectroscopy, together with the use of isotopically labeled quinones, can probe the interaction of QA with the RC protein. We establish that a simple incubation procedure of isolated RCs of Rp. viridis with an excess of extraneous quinone allows the menaquinone-9 in the QA site to be almost quantitatively replaced either by vitamin K1, a close analogue of menaquinone-9, or by ubiquinone. To our knowledge, this is the first report of quinone exchange in bacterial photosynthesis. The Fourier transform infrared data on the quinone and semiquinone vibrations show a close similarity in the bonding interactions of vitamin K1 with the protein at the QA site of Rp. viridis and Rb. sphaeroides, whereas for ubiquinone these interactions are significantly different. The results are interpreted in terms of slightly inequivalent quinone–protein interactions by comparison with the crystallographic data available for the QA site of the two RCs.
Resumo:
Conformational changes in ras p21 triggered by the hydrolysis of GTP play an essential role in the signal transduction pathway. The path for the conformational change is determined by molecular dynamics simulation with a holonomic constraint directing the system from the known GTP-bound structure (with the γ-phosphate removed) to the GDP-bound structure. The simulation is done with a shell of water molecules surrounding the protein. In the switch I region, the side chain of Tyr-32, which undergoes a large displacement, moves through the space between loop 2 and the rest of the protein, rather than on the outside of the protein. As a result, the charged residues Glu-31 and Asp-33, which interact with Raf in the homologous RafRBD–Raps complex, remain exposed during the transition. In the switch II region, the conformational changes of α2 and loop 4 are strongly coupled. A transient hydrogen bonding complex between Arg-68 and Tyr-71 in the switch II region and Glu-37 in switch I region stabilizes the intermediate conformation of α2 and facilitates the unwinding of a helical turn of α2 (residues 66–69), which in turn permits the larger scale motion of loop 4. Hydrogen bond exchange between the protein and solvent molecules is found to be important in the transition. Possible functional implications of the results are discussed.
Resumo:
Our study of the extended metal environment, particularly of the second shell, focuses in this paper on zinc sites. Key findings include: (i) The second shell of mononuclear zinc centers is generally more polar than hydrophobic and prominently features charged residues engaged in an abundance of hydrogen bonding with histidine ligands. Histidine–acidic or histidine–tyrosine clusters commonly overlap the environment of zinc ions. (ii) Histidine tautomeric metal bonding patterns in ligating zinc ions are mixed. For example, carboxypeptidase A, thermolysin, and sonic hedgehog possess the same ligand group (two histidines, one unibidentate acidic ligand, and a bound water), but their histidine tautomeric geometries markedly differ such that the carboxypeptidase A makes only Nδ1 contacts, thermolysin makes only Nɛ2 contacts, and sonic hedgehog uses one of each. Thus the presence of a similar ligand cohort does not necessarily imply the same topology or function at the active site. (iii) Two close histidine ligands HXmH, m ≤ 5, rarely both coordinate a single metal ion in the Nδ1 tautomeric conformation, presumably to avoid steric conflicts. Mononuclear zinc sites can be classified into six types depending on the ligand composition and geometry. Implications of the results are discussed in terms of divergent and convergent evolution.
Resumo:
Antithrombin, a plasma serpin, is relatively inactive as an inhibitor of the coagulation proteases until it binds to the heparan side chains that line the microvasculature. The binding specifically occurs to a core pentasaccharide present both in the heparans and in their therapeutic derivative heparin. The accompanying conformational change of antithrombin is revealed in a 2.9-Å structure of a dimer of latent and active antithrombins, each in complex with the high-affinity pentasaccharide. Inhibitory activation results from a shift in the main sheet of the molecule from a partially six-stranded to a five-stranded form, with extrusion of the reactive center loop to give a more exposed orientation. There is a tilting and elongation of helix D with the formation of a 2-turn helix P between the C and D helices. Concomitant conformational changes at the heparin binding site explain both the initial tight binding of antithrombin to the heparans and the subsequent release of the antithrombin–protease complex into the circulation. The pentasaccharide binds by hydrogen bonding of its sulfates and carboxylates to Arg-129 and Lys-125 in the D-helix, to Arg-46 and Arg-47 in the A-helix, to Lys-114 and Glu-113 in the P-helix, and to Lys-11 and Arg-13 in a cleft formed by the amino terminus. This clear definition of the binding site will provide a structural basis for developing heparin analogues that are more specific toward their intended target antithrombin and therefore less likely to exhibit side effects.