994 resultados para Host signals
Resumo:
Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.
Resumo:
The nanosecond optical limiting characteristics of sandwich-type neodymium diphthalocyanine in a co-polymer matrix of polymethyl methacrylate (PMMA) and methyl-2-cyanoacrylate have been studied for the first time. The measurements were performed using 9 ns laser pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The optical limiting performance of neodymium diphthalocyanine in co-polymer host was studied at different linear transmission. Laser damage threshold was also measured for the doped and undoped co-polymer samples. The optical limiting response is attributed to reverse saturable absorption which is due to excited-state absorption.
Resumo:
We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain.
Resumo:
In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.
Resumo:
Fine magnetic particles (sizeffi100A ˚ ) belonging to the series ZnxFe1 xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically
Resumo:
Modeling nonlinear systems using Volterra series is a century old method but practical realizations were hampered by inadequate hardware to handle the increased computational complexity stemming from its use. But interest is renewed recently, in designing and implementing filters which can model much of the polynomial nonlinearities inherent in practical systems. The key advantage in resorting to Volterra power series for this purpose is that nonlinear filters so designed can be made to work in parallel with the existing LTI systems, yielding improved performance. This paper describes the inclusion of a quadratic predictor (with nonlinearity order 2) with a linear predictor in an analog source coding system. Analog coding schemes generally ignore the source generation mechanisms but focuses on high fidelity reconstruction at the receiver. The widely used method of differential pnlse code modulation (DPCM) for speech transmission uses a linear predictor to estimate the next possible value of the input speech signal. But this linear system do not account for the inherent nonlinearities in speech signals arising out of multiple reflections in the vocal tract. So a quadratic predictor is designed and implemented in parallel with the linear predictor to yield improved mean square error performance. The augmented speech coder is tested on speech signals transmitted over an additive white gaussian noise (AWGN) channel.
Resumo:
Speech is the primary, most prominent and convenient means of communication in audible language. Through speech, people can express their thoughts, feelings or perceptions by the articulation of words. Human speech is a complex signal which is non stationary in nature. It consists of immensely rich information about the words spoken, accent, attitude of the speaker, expression, intention, sex, emotion as well as style. The main objective of Automatic Speech Recognition (ASR) is to identify whatever people speak by means of computer algorithms. This enables people to communicate with a computer in a natural spoken language. Automatic recognition of speech by machines has been one of the most exciting, significant and challenging areas of research in the field of signal processing over the past five to six decades. Despite the developments and intensive research done in this area, the performance of ASR is still lower than that of speech recognition by humans and is yet to achieve a completely reliable performance level. The main objective of this thesis is to develop an efficient speech recognition system for recognising speaker independent isolated words in Malayalam.
Resumo:
The overall aim of the work presented was to evaluate soil health management with a specific focus on soil borne diseases of peas. For that purpose field experiments were carried out from 2009 until 2013 to assess crop performance and pathogen occurrence in the rotation winter pea-maize-winter wheat and if the application of composts can improve system performance. The winter peas were left untreated or inoculated with Phoma medicaginis, in the presence or absence of yard waste compost at rate of 5 t dry matter ha-1. A second application of compost was made to the winter wheat. Fusarium ssp. were isolated and identified from the roots of all three crops and the Ascochyta complex pathogens on peas. Bioassays were conducted under controlled conditions to assess susceptibility of two peas to Fusarium avenaceum, F. solani, P. medicaginis and Didymella pinodes and of nine plant species to F. avenaceum. Also, effects of compost applications and temperature on pea diseases were assessed. Application of composts overall stabilized crop performance but it did not lead to significant yield increases nor did it affect pathogen composition and occurrence. Phoma medicaginis was dominating the pathogen complex on peas. F. graminearum, F. culmorum, F. proliferatum, Microdochium nivale, F. crookwellense, F. sambucinum, F. oxysporum, F. avenaceum and F. equiseti were frequently isolated species from maize and winter wheat with no obvious influence of the pre-crop on the Fusarium species composition. The spring pea Santana was considerably more susceptible to the pathogens tested than the winter pea EFB33 in both sterile sand and non-sterilized field soil. F. avenaceum was the most aggressive pathogen, followed by P. medicaginis, D. pinodes, and F. solani. Aggressiveness of all pathogens was greatly reduced in non-sterile field soil. F. avenaceum caused severe symptoms on roots of all nine plant species tested. Especially susceptible were Trifolium repens, T. subterraneum, Brassica juncea and Sinapis alba in addition to peas. Reduction of growing temperatures from 19/16°C day/night to 16/12°C and 13/10°C did not affect the efficacy of compost. It reduced plant growth and slightly increased disease on EFB33 whereas the highest disease severity on Santana was observed at the highest temperature, 19/16°C. Application of 20% v/v of compost reduced disease on peas due to all four pathogens depending on pea variety, pathogen and growing media used. Suppression was also achieved with lower application rate of 3.5% v/v. Tests with γ sterilized compost suggest that the suppression of disease caused by Fusarium spp. is biological in origin, whereas chemical and physical properties of compost are playing an additional role in the suppression of disease caused by D. pinodes and P. medicaginis.
Resumo:
We discuss the problem of finding sparse representations of a class of signals. We formalize the problem and prove it is NP-complete both in the case of a single signal and that of multiple ones. Next we develop a simple approximation method to the problem and we show experimental results using artificially generated signals. Furthermore,we use our approximation method to find sparse representations of classes of real signals, specifically of images of pedestrians. We discuss the relation between our formulation of the sparsity problem and the problem of finding representations of objects that are compact and appropriate for detection and classification.
Resumo:
In order to estimate the motion of an object, the visual system needs to combine multiple local measurements, each of which carries some degree of ambiguity. We present a model of motion perception whereby measurements from different image regions are combined according to a Bayesian estimator --- the estimated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In reviewing a large number of previously published phenomena we find that the Bayesian estimator predicts a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from a single computational strategy that is optimal under reasonable assumptions.
Resumo:
El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.
Resumo:
Resumen basado en el de la publicación
Resumo:
Idóneo para la diversión en los días de Adviento, pues contiene un montón de historias, manualidades, puzzles y juegos para que los niños disfruten con ellos durante este tiempo de preparación a la Navidad.