974 resultados para Helmholtz Equation
Resumo:
We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.
Resumo:
Adsorption of pure nitrogen, argon, acetone, chloroform and acetone-chloroform mixture on graphitized thermal carbon black is considered at sub-critical conditions by means of molecular layer structure theory (MLST). In the present version of the MLST an adsorbed fluid is considered as a sequence of 2D molecular layers, whose Helmholtz free energies are obtained directly from the analysis of experimental adsorption isotherm of pure components. The interaction of the nearest layers is accounted for in the framework of mean field approximation. This approach allows quantitative correlating of experimental nitrogen and argon adsorption isotherm both in the monolayer region and in the range of multi-layer coverage up to 10 molecular layers. In the case of acetone and chloroform the approach also leads to excellent quantitative correlation of adsorption isotherms, while molecular approaches such as the non-local density functional theory (NLDFT) fail to describe those isotherms. We extend our new method to calculate the Helmholtz free energy of an adsorbed mixture using a simple mixing rule, and this allows us to predict mixture adsorption isotherms from pure component adsorption isotherms. The approach, which accounts for the difference in composition in different molecular layers, is tested against the experimental data of acetone-chloroform mixture (non-ideal mixture) adsorption on graphitized thermal carbon black at 50 degrees C. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
A primary purpose of this research is to design a gradient coil that is planar in construction and can be inserted within existing infrastructure. The proposed wave equation method for the design of gradient coils is novel within the field. it is comprehensively shown how this method can be used to design the planar x-, y-, and z-gradient wire windings to produce the required magnetic fields within a certain domain. The solution for the cylindrical gradient coil set is also elucidated. The wave equation technique is compared with the well-known target held method to gauge the quality of resultant design. In the case of the planar gradient coil design, it is shown that using the new method, a set of compact gradient coils with large field of view can be produced. The final design is considerably smaller in dimension when compared with the design obtained using the target field method, and therefore the manufacturing costs and materials required are somewhat reduced.
Resumo:
Solvation. pressure due to adsorption of fluids in porous materials is the cause of elastic deformation of an adsorbent, which is accessible to direct experimental measurements. Such a deformation contributes to the Helmholtz free energy of the whole adsorbent-adsorbate system due to accumulation of compression or tension energy by the solid. It means that in the general case the solid has to be considered as not solely a source of the external potential field for the fluid confined in the pore volume, but also as thermodynamically nonmert component of the solid-fluid system. We present analysis of nitrogen adsorption isotherms and heat of adsorption in slit graphitic pores accounting for the adsorption deformation by means of nonlocal density functional theory. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We consider a type of quantum electromechanical system, known as the shuttle system, first proposed by Gorelik [Phys. Rev. Lett. 80, 4526 (1998)]. We use a quantum master equation treatment and compare the semiclassical solution to a full quantum simulation to reveal the dynamics, followed by a discussion of the current noise of the system. The transition between tunneling and shuttling regime can be measured directly in the spectrum of the noise. (c) 2006 American Institute of Physics.
Resumo:
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.