974 resultados para Hastings, Warren, 1732-1818
Resumo:
Self-neglect is a worldwide and serious public health issue that can have serious adverse outcomes and is more common in older people. Cases can vary in presentation but typically present as poor self-care, poor care of the environment and service refusal. Community nurses frequently encounter self-neglect cases and health and social care professionals play a key role in the identification, management and prevention of self-neglect. Self-neglect cases can give rise to ethical, personal and professional challenges. The aim of this article is to create a greater understanding of the concept of self-neglect among community nurses.
Resumo:
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
Resumo:
The authors explore nanoscale sensor processor (nSP) architectures. Their design includes a simple accumulator-based instruction-set architecture, sensors, limited memory, and instruction-fused sensing. Using nSP technology based on optical resonance energy transfer logic helps them decrease the design's size; their smallest design is about the size of the largest-known virus. © 2006 IEEE.
Resumo:
Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.
Resumo:
We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans.
Resumo:
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam.
Resumo:
The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3) eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2θ(13) < 0.28(0.34) for δ(CP) = 0 and a normal (inverted) hierarchy.
Resumo:
Nations around the world are considering strategies to mitigate the severe impacts of climate change predicted to occur in the twenty-first century. Many countries, however, lack the wealth, technology, and government institutions to effectively cope with climate change. This study investigates the varying degrees to which developing and developed nations will be exposed to changes in three key variables: temperature, precipitation, and runoff. We use Geographic Information Systems (GIS) analysis to compare current and future climate model predictions on a country level. We then compare our calculations of climate change exposure for each nation to several metrics of political and economic well-being. Our results indicate that the impacts of changes in precipitation and runoff are distributed relatively equally between developed and developing nations. In contrast, we confirm research suggesting that developing nations will be affected far more severely by changes in temperature than developed nations. Our results also suggest that this unequal impact will persist throughout the twenty-first century. Our analysis further indicates that the most significant temperature changes will occur in politically unstable countries, creating an additional motivation for developed countries to actively engage with developing nations on climate mitigation strategies. © 2011, Mary Ann Liebert, Inc.
Resumo:
During the summer of 1994, Archaeology in Annapolis conducted archaeological investigations of the city block bounded by Franklin, South and Cathedral Streets in the city of Annapolis. This Phase III excavation was conducted as a means to identify subsurface cultural resources in the impact area associated with the proposed construction of the Anne Arundel County Courthouse addition. This impact area included both the upper and lower parking lots used by Courthouse employees. Investigations were conducted in the form of mechanical trenching and hand excavated units. Excavations in the upper lot area yielded significant information concerning the interior area of the block. Known as Bellis Court, this series of rowhouses was constructed in the late nineteenth century and was used as rental properties by African-Americans. The dwellings remained until the middle of the twentieth century when they were demolished in preparation for the construction of a Courthouse addition. Portions of the foundation of a house owned by William H. Bellis in the 1870s were also exposed in this area. Construction of this house was begun by William Nicholson around 1730 and completed by Daniel Dulany in 1732/33. It was demolished in 1896 by James Munroe, a Trustee for Bellis. Excavations in the upper lot also revealed the remains of a late seventeenth/early eighteenth century wood-lined cellar, believed to be part of the earliest known structure on Lot 58. After an initially rapid deposition of fill around 1828, this cellar was gradually covered with soil throughout the remainder of the nineteenth century. The fill deposit in the cellar feature yielded a mixed assemblage of artifacts that included sherds of early materials such as North Devon gravel-tempered earthenware, North Devon sgraffito and Northem Italian slipware, along with creamware, pearlware and whiteware. In the lower parking lot, numerous artifacts were recovered from yard scatter associated with the houses that at one time fronted along Cathedral Street and were occupied by African- Americans. An assemblage of late seventeenth century/early eighteenth century materials and several slag deposits from an early forge were recovered from this second area of study. The materials associated with the forge, including portions of a crucible, provided evidence of some of the earliest industry in Annapolis. Investigations in both the upper and lower parking lots added to the knowledge of the changing landscape within the project area, including a prevalence of open space in early periods, a surprising survival of impermanent structures, and a gradual regrading and filling of the block with houses and interior courts. Excavations at the Anne Arundel County Courthouse proved this to be a multi-component site, rich in cultural resources from Annapolis' Early Settlement Period through its Modern Period (as specified by Maryland's Comprehensive Historic Preservation Plan (Weissman 1986)). This report provides detailed interpretations of the archaeological findings of these Phase III investigations.
Resumo:
A Troublesome Inheritance, by Nicholas Wade, should be read by anyone interested in race and recent human evolution. Wade deserves credit for challenging the popular dog-ma that biological differences between groups either don't exist or cannot ex-plain the relative success of different groups at different tasks. Wade's work should be read alongside another re-cent book, The 10,000 Year Explosion: How Civilization Accelerated Human Evolution, by Gregory Cochran and Henry Harpending. Together, these books represent a ma-jor turning point in the public debate about the speed with which relatively isolated groups can evolve: both books suggest that small genetic differences between members of different groups can have large impacts on their abilities and propensities, which in turn affect the outcomes of the societies in which they live.
Resumo:
Prostate and breast cancers are two of the most common types of cancer in the United States, and those cancers metastasize to bone in more than two thirds of patients. Recent evidence suggests that thermal therapy is effective at treating metastatic bone cancer. For example, thermal therapy enables targeted drug delivery to bone, ablation of cancer cells in bone marrow, and palliation of bone pain. Thermal therapy of bone metastases would be greatly improved if it were possible to image the temperature of the tissue surrounding the disease, which is usually red bone marrow (RBM). Unfortunately, current thermal imaging techniques are inaccurate in RBM.
This dissertation shows that many of the difficulties with thermal imaging of RBM can be overcome using a magnetic resonance phenomenon called an intermolecular multiple quantum coherence (iMQC). Herein, iMQCs are detected with a magnetic resonance imaging (MRI) pulse sequence called multi-spin-echo HOMOGENIZED with off resonance transfer (MSE-HOT). Compared to traditional methods, MSE-HOT provided ten-fold more accurate images of temperature change. Furthermore, MSE-HOT was translated to a human MRI scanner, which enabled imaging of RBM temperature during heating with a clinical focused ultrasound applicator. In summary, this dissertation develops a MRI technique that enables thermal imaging of RBM during thermal therapy of bone metastases.
Resumo:
This thesis reports advances in magnetic resonance imaging (MRI), with the ultimate goal of improving signal and contrast in biomedical applications. More specifically, novel MRI pulse sequences have been designed to characterize microstructure, enhance signal and contrast in tissue, and image functional processes. In this thesis, rat brain and red bone marrow images are acquired using iMQCs (intermolecular multiple quantum coherences) between spins that are 10 μm to 500 μm apart. As an important application, iMQCs images in different directions can be used for anisotropy mapping. We investigate tissue microstructure by analyzing anisotropy mapping. At the same time, we simulated images expected from rat brain without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Besides magnitude of iMQCs, phase of iMQCs should be studied as well. The phase anisotropy maps built by our method can clearly show susceptibility information in kidneys. It may provide meaningful diagnostic information. To deeply study susceptibility, the modified-crazed sequence is developed. Combining phase data of modified-crazed images and phase data of iMQCs images is very promising to construct microstructure maps. Obviously, the phase image in all above techniques needs to be highly-contrasted and clear. To achieve the goal, algorithm tools from Susceptibility-Weighted Imaging (SWI) and Susceptibility Tensor Imaging (STI) stands out superb useful and creative in our system.
Resumo:
BACKGROUND: Parrots belong to a group of behaviorally advanced vertebrates and have an advanced ability of vocal learning relative to other vocal-learning birds. They can imitate human speech, synchronize their body movements to a rhythmic beat, and understand complex concepts of referential meaning to sounds. However, little is known about the genetics of these traits. Elucidating the genetic bases would require whole genome sequencing and a robust assembly of a parrot genome. FINDINGS: We present a genomic resource for the budgerigar, an Australian Parakeet (Melopsittacus undulatus) -- the most widely studied parrot species in neuroscience and behavior. We present genomic sequence data that includes over 300× raw read coverage from multiple sequencing technologies and chromosome optical maps from a single male animal. The reads and optical maps were used to create three hybrid assemblies representing some of the largest genomic scaffolds to date for a bird; two of which were annotated based on similarities to reference sets of non-redundant human, zebra finch and chicken proteins, and budgerigar transcriptome sequence assemblies. The sequence reads for this project were in part generated and used for both the Assemblathon 2 competition and the first de novo assembly of a giga-scale vertebrate genome utilizing PacBio single-molecule sequencing. CONCLUSIONS: Across several quality metrics, these budgerigar assemblies are comparable to or better than the chicken and zebra finch genome assemblies built from traditional Sanger sequencing reads, and are sufficient to analyze regions that are difficult to sequence and assemble, including those not yet assembled in prior bird genomes, and promoter regions of genes differentially regulated in vocal learning brain regions. This work provides valuable data and material for genome technology development and for investigating the genomics of complex behavioral traits.
Resumo:
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.
Resumo:
The Fantasy, as the term suggests, is a genre that composers have found congenial for exploring innovative and imaginative processes. Works in this genre are numerous in the solo piano literature, and extend even to works for piano and orchestra and to chamber music with piano. I was curious to explore how a specific genre of music maintained similar characteristics but evolved over time. A fantasy is primed to be inventive and I wanted to see how composers from different eras and backgrounds would handle their material in this genre. I have learned that composers worked through formal developments while making innovations within this genre. The heart of my dissertation is presented through the recording project. Because ofthe abundance ofpiano fantasies, many works had to be excluded from this project for time's sake. On two compact discs, I have recorded approximately two hours of solo piano music. I have included some shorter fantasies to magnify significant developments from era to era, country to country, and composer to composer. The first disc has recordings of eighteenth and nineteenth-century fantasies: Chromatic Fantasy and Fugue, BWV 903 by J.S. Bach (1685-1750); Fantasia inC major, H. XVII, 4 by Franz Joseph Haydn (1732-1809); Fantasy inc minor, K. 475 by Wolfgang Amadeus Mozart (1756- 1791); Fantasia inf-sharp minor, Op. 28 by Felix Mendelssohn (1809-1847); and Polonaise-Fantaisie in A-flat major, Op. 61 by Frederic Chopin (1810-1849). On the second disc I have included mid-19th, 20th and 2151-century piano fantasies: Fantasy and Fugue on the Theme B-A-C-H by Franz Liszt (1811-1886); Fantasia Baetica by Manuel de Falla (1876-1946); Three Fantasies by William Bergsma (1921-1994); Fantasy, Aria and Fugue by Frederic Goossen (1927-2011); and Piano Fantasy ("Wenn ich einmal sol! scheiden") by Richard Danielpour (b. 1956). The accompanying document includes program notes for each of the pieces recorded. They were recorded on a Steinway "D" in Dekelboum Concert Hall at the University of Maryland by Antonino D'Urzo ofOpusrite Productions. This document is available in the Digital Repository at the University of Maryland and the CO's are available through the Library System at the University of Maryland.