933 resultados para HYBRID LAYER
Resumo:
The General Ocean Turbulence Model (GOTM) is applied to the diagnostic turbulence field of the mixing layer (ML) over the equatorial region of the Atlantic Ocean. Two situations were investigated: rainy and dry seasons, defined, respectively, by the presence of the intertropical convergence zone and by its northward displacement. Simulations were carried out using data from a PIRATA buoy located on the equator at 23 degrees W to compute surface turbulent fluxes and from the NASA/GEWEX Surface Radiation Budget Project to close the surface radiation balance. A data assimilation scheme was used as a surrogate for the physical effects not present in the one-dimensional model. In the rainy season, results show that the ML is shallower due to the weaker surface stress and stronger stable stratification; the maximum ML depth reached during this season is around 15 m, with an averaged diurnal variation of 7 m depth. In the dry season, the stronger surface stress and the enhanced surface heat balance components enable higher mechanical production of turbulent kinetic energy and, at night, the buoyancy acts also enhancing turbulence in the first meters of depth, characterizing a deeper ML, reaching around 60 m and presenting an average diurnal variation of 30 m.
Resumo:
The Alagoas Curassow Mitu mitu is considered extinct in the wild. Since 1979, two females and a male caught in the wild have bred successfully in captivity, and, in 1990, hybridizations between M. mitu and Razor-billed Mitu M. tuberosum were performed. By June 2008, there were around 130 living birds in two different aviaries. We sequenced two regions of the mitochondrial DNA of both captive stocks of Alagoas Curassows. We unequivocally identified hybrids that have haplotype typical of M. tuberosum. However, unless the original studbook can be recovered there is no confident way to discriminate ""pure"" M. mitu birds for breeding and reintroduction purposes. Allied with morphological data gathered in an independent study, we suggest that conservation actions need to focus on specimens with diagnostic phenotypic characters of M. mitu, and avoid birds with mitochondria, genetic contribution of M. tuberosum. Although we have detected low levels of genetic variability among captive birds, the steady increase of the captive population suggests that inbreeding depression and hybridization are not a reproductive hindrance. Reintroduction of some of these potential hybrid birds in the original area of occurrence of the Alagoas Curassow may be the only hope to fill in the ecological niche left vacant. An educational program involving local communities to conserve future reintroduction of curassows and their restored habitat is highly recommended. Accepted 12 November 2009.
Resumo:
Impedance spectroscopy has been proven a powerful tool for reaching high sensitivity in sensor arrays made with nanostructured films in the so-called electronic tongue systems, whose distinguishing ability may be enhanced with sensing units capable of molecular recognition. In this study we show that for optimized sensors and bio-sensors the dielectric relaxation processes involved in impedance measurements should also be considered, in addition to an adequate choice of sensing materials. We used sensing units made from layer-by-layer (LbL) films with alternating layers of the polyeletrolytes, poly(allylamine) hydrochloride (PAH) and poly(vinyl sulfonate) (PVS), or LbL films of PAH alternated with layers of the enzyme phytase, all adsorbed on gold interdigitate electrodes. Surprisingly, the detection of phytic acid was as effective in the PVS/PAH sensing system as with the PAH/phytase system, in spite of the specific interactions of the latter. This was attributed to the dependence of the relaxation processes on nonspecific interactions such as electrostatic cross-linking and possibly on the distinct film architecture as the phytase layers were found to grow as columns on the LbL film, in contrast to the molecularly thin PAH/PVS films. Using projection techniques, we were able to detect phytic acid at the micromolar level with either of the sensing units in a data analysis procedure that allows for further optimization.
Resumo:
Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.
Resumo:
There is an increasing interest in the application of Evolutionary Algorithms (EAs) to induce classification rules. This hybrid approach can benefit areas where classical methods for rule induction have not been very successful. One example is the induction of classification rules in imbalanced domains. Imbalanced data occur when one or more classes heavily outnumber other classes. Frequently, classical machine learning (ML) classifiers are not able to learn in the presence of imbalanced data sets, inducing classification models that always predict the most numerous classes. In this work, we propose a novel hybrid approach to deal with this problem. We create several balanced data sets with all minority class cases and a random sample of majority class cases. These balanced data sets are fed to classical ML systems that produce rule sets. The rule sets are combined creating a pool of rules and an EA is used to build a classifier from this pool of rules. This hybrid approach has some advantages over undersampling, since it reduces the amount of discarded information, and some advantages over oversampling, since it avoids overfitting. The proposed approach was experimentally analysed and the experimental results show an improvement in the classification performance measured as the area under the receiver operating characteristics (ROC) curve.
Resumo:
This paper reports a direct observation of an interesting split of the (022)(022) four-beam secondary peak into two (022) and (022) three-beam peaks, in a synchrotron radiation Renninger scan (phi-scan), as an evidence of the layer tetragonal distortion in two InGaP/GaAs (001) epitaxial structures with different thicknesses. The thickness, composition, (a perpendicular to) perpendicular lattice parameter, and (01) in-plane lattice parameter of the two epitaxial ternary layers were obtained from rocking curves (omega-scan) as well as from the simulation of the (022)(022) split, and then, it allowed for the determination of the perpendicular and parallel (in-plane) strains. Furthermore, (022)(022) omega:phi mappings were measured in order to exhibit the multiple diffraction condition of this four-beam case with their split measurement.
Resumo:
Polysilsesquioxanes containing methacrylate pendant groups were prepared by the sol-gel process through hydrolysis and condensation of (3-methacryloxypropyl)trimethoxysilane (MPTS) dissolved in a methanol/methyl methacrylate (MMA) mixture. The effects of different water, MMA, and methanol contents, as well as of pH, on the nanoscopic and local structures of the system, at advanced stages of the condensation reaction, were studied by small-angle X-ray scattering (SAXS) and (29)Si nuclear magnetic resonance (NMR) spectroscopy, respectively. SAXS results indicate that the nanoscopic features of the hybrid sol could be described by a hierarchical model composed of two levels, namely (i) silsesquioxane (SSQO) nanoparticles Surrounded by the methacrylate pendant groups and the methanol/MMA mixture. and (ii) aggregation zones or islands containing correlated SSQO nanoparticles, embedded in the liquid medium. The (29)Si NMR results Show that the inner Structures of SSQO nanoparticles produced at pH 1 and 3 were built Up of polyhedral structures. mainly cagelike octamers and small linear oligomers, respectively. Irrespective of MMA and methanol contents, for a [H(2)O]/[MPTS] ratio higher than or equal to 1, the SSQO nailoparticles produced at pH I exhibit an average condensation degree (CD approximate to 69-87%) and average radius of gyration (R(g) approximate to 2.5 angstrom) larger than those produced at pH 3 (CD approximate to 48-67% and R(g) approximate to 1.5 angstrom). Methanol appears to act as a redispersion agent, by decreasing the number of particles inside the aggregation zones, while the addition of MMA induces a swelling of the aggregation zones.
Resumo:
We analyze the influence of a surface dielectric layer on the transient phenomena related to the ionic redistribution in an electrolytic cell submitted to a step-like external voltage. The adsorption-desorption phenomenon is taken into account in the famework of the Gouy-Chapman approximation, where the ions are assumed dimensionless. In the limit of small amplitude of the applied voltage, where the equations of the problem can be linearized, we obtain an analytical solution for the surface densities of ions, for the electrical potential and for the relaxation time for the transient phenomena. In the general case, when the linearized analysis is no longer valid, the solution of the problem is obtained numerically. The role of the thickness of the dielectric layer on the relaxation time is also discussed.
Resumo:
We investigate from first principles the electronic and transport properties of hybrid organic/silicon interfaces of relevance to molecular electronics. We focus on conjugated molecules bonded to hydrogenated Si through hydroxyl or thiol groups. The electronic structure of the systems is addressed within density functional theory, and the electron transport across the interface is directly evaluated within the Landauer approach. The microscopic effects of molecule-substrate bonding on the transport efficiency are explicitly analyzed, and the oxygen-bonded interface is identified as a candidate system when preferential hole transfer is needed.
Resumo:
This work presents the electro-optical characterization of metal-organic interfaces prepared by the Ion Beam Assisted Deposition (IBAD) method. IBAD applied in this work combines simultaneously metallic film deposition and bombardment with an independently controlled ion beam, allowing different penetration of the ions and the evaporated metallic elements into the polymer. The result is a hybrid, non-abrupt interface, where polymer, metal and ion coexists. We used an organic light emitting diode, which has a typical vertical-architecture, for the interface characterization: Glass/Indium Tin Oxide (ITO)/Poly[ethylene-dioxythiophene/poly{styrenesulfonicacid}]) (PEDOT:PSS) /Emitting Polymer/Metal. The emitting polymer layer comprised of the Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PFO) and the metal layer of aluminum prepared with different Ar(+) ion energies varying in the range from 0 to 1000 eV. Photoluminescence, Current-Voltage and Electroluminescence measurements were used to study the emission and electron injection properties. Changes of these properties were related with the damage caused by the energetic ions and the metal penetration into the polymer. Computer simulations of hybrid interface damage and metal penetration were confronted with experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors
Resumo:
The integration of carbon nanotubes in conjunction with a chemical or biological recognition element into a semiconductor field-effect device (FED) may lead to new (bio)chemical sensors. In this study, we present a new concept to develop field-effect-based sensors, using a light-addressable potentiometric sensor (LAPS) platform modified with layer-by-layer (LbL) films of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. Film growth was monitored for each layer adsorbed on the LAPS chip by Measuring current-voltage (IIV) curves. The morphology of the films was analyzed via atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), revealing the formation of a highly interconnected nanostructure of SWNTs-network into the dendrimer layers. Constant current (CC) Measurements showed that the incorporation of the PAMAM/SWNT LbL film containing LIP to 6 bilayers onto the LAPS Structure has a high pH sensitivity of ca. 58 mV/pH. The biosensing ability of the devices was tested for penicillin G via adsorptive immobilization of the enzyme penicillinase atop the LgL film. LAPS architectures modified with the LbL film exhibited higher sensitivity, ca. 100 mV/decade, in comparison to ca. 79 mV/decade for all unmodified LAPS, which demonstrates the potential application of the CNT-LbL Structure in field-effect-based (bio)chemical sensors.
Resumo:
The molecular arrangement in organic thin films is crucial for their increasing technological applications. Here, we use vibrational spectroscopy by sum-frequency generation (SFG) to study the ordering of polyelectrolyte layers adsorbed on silica for all steps of layer-by-layer (LbL) self-assembly. In situ measurements during adsorption and rinsing showed that the adsorbed polymer has a disordered conformation and confirmed surface charge overcompensation upon polyelectrolyte adsorption by probing the interfacial electric field. In dry films, the polymer chains acquired a net orientational ordering, which was affected, however, by the adsorption of subsequent layers. Such a detailed characterization may allow the control of LbL film structure and functionality with unprecedented power.
Resumo:
The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS)(4)/(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The assembly of carbon nanotubes (CNTs) into nanostructured films is attractive for producing functionalized hybrid materials and (bio-)chemical sensors, but this requires experimental methods that allow for control of molecular architecturcs. In this study, we exploit the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of alternating layers of multi-walled carbon nanotubes (MWNTs) dispersed in polyarninoamide (PAMAM) dendrimers and nickel phthalocyanine (NiTsPc) were used in amperometric detection of the neurotransmitter dopamine (DA). The electrochemical properties evaluated with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc LbL films led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of DA. The latter allowed detection of DA even in the presence of ascorbic acid (AA), a typical interferent for DA. Another LbL film was obtained with layers of PAMAM and single-walled carbon nanotubes (SWNTs) employed in field-effect-devices using a capacitive electrolyte-insulator-semiconductor structure (EIS). The adsorption of the film components was monitored by measuring the flat-band voltage shift in capacitance-voltage (C-P) curves, caused by the charges from the components. Constant capacitance (ConCap) measurements showed that the EISPAMAM/SWNT film displayed a high pH sensitivity (ca. 54.5 mV/pH), being capable of detecting penicillin G between 10(-4) mol L(-1) and 10(-2) mol L-1, when a layer of penicillinase was adsorbed atop the PAMAM/SWNT film. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The adsorption kinetics curves of poly(xylylidene tetrahydrothiophenium chloride) (PTHT), a poly-p-phenylenevinylene (PPV) precursor, and the sodium salt of dodecylbenzene sulfonic acid (DBS), onto (PTHT/DBS)(n) layer-by-layer (LBL) films were characterized by means of UV-vis spectroscopy. The amount of PTHT/DBS and PTHT adsorbed on each layer was shown to be practically independent of adsorption time. A Langmuir-type metastable equilibrium model was used to adjust the adsorption isotherms data and to estimate adsorption/desorption coefficients ratios, k = k(ads)/k(des), values of 2 x 10(5) and 4 x 10(6) for PTHT and PTHT/DBS layers, respectively. The desorption coefficient has been estimated, using literature values for poly(o-methoxyaniline) desorption coefficient, as was found to be in the range of 10(-9) to 10(-6) s(-1), indicating that quasi equilibrium is rapidly attained.