982 resultados para HELICITY AMPLITUDES
Resumo:
We present benthic isotope stratigraphies for Sites 1236, 1237, 1239, and 1241 that span the late Miocene-Pliocene time interval from 6 to 2.4 Ma. Orbitally tuned timescales were generated for Sites 1237 and 1241 by correlating the high-frequency variations in gamma ray attenuation density, percent sand of the carbonate fraction, and benthic d13C to variations in Earth's orbital parameters. The astronomical timescales for Sites 1237 and 1241 are in agreement with the one from Atlantic Site 925/926 (Ocean Drilling Program Leg 154). The comparison of benthic d18O and d13C records from the east Pacific sites and Atlantic Site 925/926 revealed a surprising clarity of the "41-k.y. signal" in d13C records and a remarkably good correlation between their d13C records. This suggests that the late Miocene-Pliocene amplitudes of obliquity-related d13C cycles reflect a magnitude of global response often larger than that provided by obliquity-related d18O cycles. At Site 1237, the orbitally derived ages of Pliocene magnetic reversal boundaries between the base of Réunion and the top of Thvera confirm astronomical datings of the generally accepted ATNTS2004 timescale, except for the top of Kaena and the base of Sidufjall. Our astronomical age for the top of Kaena is about one obliquity cycle older. The base of Sidufjall appears to be about one precession cycle younger. The age models of Sites 1236 and 1239 were established by correlating their benthic d18O and d13C records directly to the orbitally tuned isotope record of Site 1241.
Resumo:
Water isotope records from the EPICA Dronning Maud Land (EDML) and the NorthGRIP ice cores have revealed a one to one coupling between Antarctic Isotope Maxima (AIM) and Greenland Dansgaard-Oeschger (DO) events back to 50 kyr. In order to explore if this north-south coupling is persistent over Marine Isotopic Stage 5 (MIS 5), a common timescale must first be constructed. Here, we present new records of d18O of O2 (d18Oatm) and methane (CH4) measured in the air trapped in ice from the EDML (68-147 kyr) and NorthGRIP (70-123 kyr) ice cores. We demonstrate that, through the period of interest, CH4 records alone are not sufficient to construct a common gas timescale between the two cores. Millennial-scale variations of d18Oatm are evidenced over MIS 5 both on the Antarctic and Greenland ice cores and are coupled to CH4 profiles to synchronise the NorthGRIP and EDML records. They are shown to be a precious tool for ice core synchronisation. With this new dating strategy, we produce the first continuous and accurate sequence of the north-south climatic dynamics on a common ice timescale for the last glacial inception and the first DO events of MIS 5, reducing relative dating uncertainties to an accuracy of a few centuries at the onset of DO events 24 to 20. This EDML-NorthGRIP synchronisation provides new firm evidence that the bipolar seesaw is a pervasive pattern from the beginning of the glacial period. The relationship between Antarctic warming amplitudes and their concurrent Greenland stadial duration highlights the particularity of DO event 21 and its Antarctic counterpart. Our results suggest a smaller Southern Ocean warming rate for this long DO event compared to DO events of MIS 3.
Resumo:
The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend, the two-step, long-term Eocene cooling, and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom water temperatures at low (less than 30°) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling.
Resumo:
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral delta18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly delta18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater delta18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater delta18O and salinity were observed. The two parameters were related to each other by the equation delta18O Seawater (per mil, VSMOW) = 0.281 * Salinity - 9.14. The high-resolution coral delta18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater delta18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral delta18O calibrations against the in situ measurements show that temperature (T) is related to coral delta18O (delta c) and seawater delta18O (delta w) by the equation T (°C) = -5.38 (delta c - delta w) -1.08. Our results demonstrate that coral delta18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater delta18O to this proxy, which could be ignored.
Resumo:
Paleotemperature curves were drawn from oxygen-isotope ratios in CaCO3 of planktonic foraminiferal tests and by the micropaleontological method using quantitative relationships of their species. Two series of curves yield similar results. These data confirm that isotope composition of oxygen reflects primarily temperature, and not isotope composition in ocean water. Temperature of the upper layer of ocean water increased from north to south both during the last two glaciations and in the interglacials. All three sediment cores collected from different latitudes show approximately the same amplitudes of fluctuation of mean annual temperature during times of their accumulation, as determined independently by different methods; these amplitudes are estimated as 5-7°C.
Resumo:
A large population of the colonial pelagic tunicate Pyrosoma atlanticum occurred in April 1991 in offshore waters of the Ligurian Sea (Northwestern Mediterranean). The high numbers of colonies caught allowed their vertical distribution and diel migration in the 0-965 m water column to be described as a function of their size. Daytime depths and amplitudes of the migration were correlated with colony size. The amplitude of the migration ranged from 90 m for 3-mm-length colonies to 760 m for 51-mm-length colonies, with a mean amplitude of 410 m for the whole population, all sizes pooled. The results of horizontal hauls at a given depth around sunrise and sunset showed a marked diurnal symmetry of the migratory cycle relative to noon, and that migration of the population was not cohesive. For example, the larger the colonies, the later after sunset they reached the upper layers during their upward migration.
Resumo:
Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.
Resumo:
New maps of free-air and the Bouguer gravity anomalies on the Weddell Sea sector (70-81° S, 6-75° W) of Antarctica are presented. These maps are based on the first computer compilation of available gravity data collected by ''Sevmorgeologia'' in 1976-89 in the southern Weddell Sea and adjacent coasts of western Dronning Maud Land (WDML) and Coats Land. The accomplished gravity studies comprise airborne observations with a line spacing of about 20 km and conventional measurements at over-the-ice points, which were spaced at 10-30 km and supplemented by seismic soundings. Hence, anomalies on the maps represent mainly large-scale and deep crustal features. The dominant feature in free-air gravity map is a large dipolar gravity anomaly stretching along the continental margin. Following the major grain of seabed morphology this shelf-edge/slope anomaly (SESA) is clearly divided into three segments characterized by diverse anomaly amplitudes, wavelengths and trends. They are associated with continental margins of different geotectonic provinces of Antarctica surrounding the Weddell Sea. Apparent distinctions in the SESA signatures are interpreted as the gravity expression of tectonic, deep crustal structure segmentation of the continental margin. The prominent gravity highs (100-140 mGal) of the shelf edge anomaly mapped along WDML are assumed to represent high-density mantle injections intruded into the middle/lower crust during initial rifting of continental breakup. Enlarged wavelengths and diminished amplitudes of the gravity anomaly westwards, along the Weddell Sea embayment (WSE) margin, reflect a widening of the continental slope and a significant increase in thickness of underlying sediment strata. Low amplitude, negative free-air anomalies in the Filchner-Ronne Ice Shelves (FRIS) contrast sharply with the dominating positive anomalies offshore. This indicates a greater sedimentary thickness of the basin in this area. Crustal response to the enlarged sediment load is impressed in mostly positive features of the Bouguer gravity field observed here. Two pronounced positive Bouguer anomalies of 50-70 mGal and an average widths of 200 km dominate the Weddell Sea embayment margins towards the Antarctic Peninsula and the East Antarctic craton. They correlate well with very deep seabed troughs (> 1000 m below sea level). The gravity highs are most likely caused by a shallow upper mantle underneath graben-rift structures evolved at the margins of the WSE basin. A regional zone (> 100 km in width) of the prominent Bouguer and free-air negative anomalies (-40 to -60 mGal) adjacent Coats Land to the north of the ice shelf edge may indicate the presence of the thick old cratonic crust far offshore beneath the Weddell Sea Embayment.
Resumo:
Ocean Drilling Program Legs 127 and 128 in the Yamato Basin of the Japan Sea, a Miocene-age back-arc basin in the western Pacific Ocean, recovered incompatible-element-depleted and enriched tholeiitic dolerites and basalts from the basin floor, which provide evidence of a significant sedimentary component in their mantle source. Isotopically, the volcanic rocks cover a wide range of compositions (e.g., 87Sr/86Sr = 0.70369 - 0.70503, 206Pb/204Pb = 17.65 - 18.36) and define a mixing trend between a depleted mantle (DM) component and an enriched component with the composition of EM II. At Site 797, the combined isotope and trace element systematics support a model of two component mixing between depleted, MORB-like mantle and Pacific pelagic sediments. A best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc. The sediments have large depletions in the high field strength elements and are relatively enriched in the large-ion-lithophile elements, including Pb. These characteristics are mirrored, with reduced amplitudes, in Japan Sea enriched tholeiites and northeast Japan arc lavas, which strengthens the link between source enrichment and subducted sediments. However, Site 579/581 sediments have higher LILE/REE and lower HFSE/REE than the enriched component inferred fiom mixing trends at Site 797. Sub-arc devolatilization of the sediments is a process that will lower LILE/REE and raise HFSE/REE in the residual sediment, and thus this residual sediment may serve as the enriched component in the back-arc basalt source. Samples from other potential sources of an enriched, EM II-like component beneath Japan, such as the subcontinental lithosphere or crust, have isotopic compositions which overlap those of the Japan Sea tholeiites and are not "enriched" enough to be the EM II end-member.
Resumo:
Benthic (Uvigerina spp., Cibicidoides spp., Gyroidinoides spp.) and planktonic (N. pachyderma sinistral, G. bulloides) stable isotope records from three core sites in the central Gulf of Alaska are used to infer mixed-layer and deepwater properties of the late glacial Subarctic Pacific. Glacial-interglacial amplitudes of the planktonic delta18O records are 1.1-1.3 per mil, less than half the amplitude observed at core sites at similar latitudes in the North Atlantic; these data imply that a strong, negative deltaw anomaly existed in the glacial Subarctic mixed layer during the summer, which points to a much stronger low-salinity anomaly than exists today. If true, the upper water column in the North Pacific would have been statically more stable than today, thus suppressing convection even more efficiently. This scenario is further supported by vertical (i.e., planktic versus benthic) delta18O and delta13C gradients of >1 per mil, which suggest that a thermohaline link between Pacific deep waters and the Subarctic Pacific mixed layer did not exist during the late glacial. Epibenthic delta13C in the Subarctic Pacific is more negative than at tropical-subtropical Pacific sites but similar to that recorded at Southern Ocean sites, suggesting ventilation of the deep central Pacific from mid-latitude sources, e.g., from the Sea of Japan and Sea of Okhotsk. Still, convection to intermediate depths could have occurred in the Subarctic during the winter months when heat loss to the atmosphere, sea ice formation, and wind-driven upwelling of saline deep waters would have been most intense. This would be beyond the grasp of our planktonic records which only document mixed-layer temperature-salinity fields extant during the warmer seasons. Also we do not have benthic isotope records from true intermediate water depths of the Subarctic Pacific.
Resumo:
Paleotemperature curves were drawn from oxygen-isotope ratios in CaCO3 of planktonic foraminiferal tests and by the micropaleontological method using quantitative relationships of their species. Two series of curves yield similar results. These data confirm that isotope composition of oxygen reflects primarily temperature, and not isotope composition in ocean water. Temperature of the upper layer of ocean water increased from north to south both during the last two glaciations and in the interglacials. All three sediment cores collected from different latitudes show approximately the same amplitudes of fluctuation of mean annual temperature during times of their accumulation, as determined independently by different methods; these amplitudes are estimated as 5-7°C.
Resumo:
A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.
Resumo:
Part of the geophysical work at the German Georg von Neumayer Station is the recording of the tidal movement of the Ekström Ice Shelf. Measurements are performed with an earthtide gravity meter for the vertical component of the movement and two simple tiltmeters for the horizontal components. Gravity measurements were done continuously during the 1984/85 winter season at the observatory of the Georg von Neumayer Station. Tilt measurements were carried out at the station and at three locations on an ice-rise at about 10 km distance from the station. Gravity measurements provide the tidal movements of the ice shelf, which amounts to about 1 m at spring tide. The most important result of the tiltmeter measurements lies in the fact that the amplitudes of tilt are substantially larger at the ice-rlse than at the observatory. Results of tide-correlated ice quake activities are also presented.
Resumo:
Planktonic foraminiferal assemblages and artificial neural network estimates of sea-surface temperature (SST) at ODP Site 1123 (41°47.2'S, 171°29.9'W; 3290 m deep), east of New Zealand, reveal a high-resolution history of glacial-interglacial (G-I) variability at the Subtropical Front (STF) for the last 1.2 million years, including the Mid-Pleistocene climate transition (MPT). Most G-I cycles of ~100 kyr duration have short periods of cold glacial and warm deglacial climate centred on glacial terminations, followed by long temperate interglacial periods. During glacial-deglacial transitions, maximum abundances of subantarctic and subtropical taxa coincide with SST minima and maxima, and lead ice volume by up to 8 kyrs. Such relationships reflect the competing influence of subantarctic and subtropical surface inflows during glacial and deglacial periods, respectively, suggesting alternate polar and tropical forcing of southern mid-latitude ocean climate. The lead of SSTs and subtropical inflow over ice volume points to tropical forcing of southern mid-latitude ocean-climate during deglacial warming. This contrasts with the established hypothesis that southern hemisphere ocean climate is driven by the influence of continental glaciations. Based on wholesale changes in subantarctic and subtropical faunas, the last 1.2 million years are subdivided into 4-distinct periods of ocean climate. 1) The pre-MPT (1185-870 ka) has high amplitude 41-kyr fluctuations in SST, superimposed on a general cooling trend and heightened productivity, reflecting long-term strengthening of subantarctic inflow under an invigorated Antarctic Circumpolar Current. 2) The early MPT (870-620 ka) is marked by abrupt warming during MIS 21, followed by a period of unstable periodicities within the 40-100 kyr orbital bands, decreasing SST amplitudes, and long intervals of temperate interglacial climate punctuated by short glacial and deglacial phases, reflecting lower meridional temperature gradients. 3) The late MPT (620-435 ka) encompasses an abrupt decrease in the subantarctic inflow during MIS 15, followed by a period of warm equable climate. Poorly defined, low amplitude G-I variations in SSTs during this interval are consistent with a relatively stable STF and evenly balanced subantarctic and subtropical inflows, possibly in response to smaller, less dynamic polar icesheets. 4) The post-MPT (435-0 ka) is marked by a major climatic deterioration during MIS 12, and a return to higher amplitude 100 kyr-frequency SST variations, superimposed on a long term trend towards cooler SSTs and increased mixed-layer productivity as the subantarctic inflow strengthened and polar icesheets expanded.
Resumo:
Carbonate oozes recovered by hydraulic piston coring at DSDP Site 586 on Ontong-Java Plateau and Site 591 on Lord Howe Rise have carbonate contents that are consistently higher than 90% with only minor variations. Consequently, paleoceanographic signals were not recorded in detail in the carbonate contents. However, mass accumulation rates of carbonate increased in the late Miocene to mid-Pliocene, reflecting an increase in productivity, then abruptly decreased from mid-Pliocene to the present. Variations in relative abundances of coarse material (foraminifers) and fine material (mostly calcareous nannofossils) do reflect histories of current winnowing and biogenic productivity at the two sites. The late Miocene from 10.5 to 6.5 m.y. ago was a time of relatively constant, quiet, pelagic sedimentation with typical southwest Pacific sedimentation rates of 20-25 m/m.y. The average coarse-fraction abundances are always higher at Site 586 than at Site 591, which reflects winnowing at Site 586. These conditions were interrupted between 6.5 to 4.0 m.y. ago when increased upwelling at the Subtropical Divergence and the Equatorial Divergence produced greater productivity of calcareous planktonic organisms. The increased productivity is suggested by large increases in both fineand coarse-fraction material and constant ratios of foraminifers to nannofossils. The maximum of productivity was about 4.0 m.y. ago. This period of increased upwelling is coincident with the inferred development of the West Antarctic ice sheet. The high productivity was followed by an abrupt increase in winnowing about 2.5 m.y. ago at Site 591, but not until about 2.0 m.y. ago at Site 586. By 2.0 m.y. ago in the late Pliocene, quiet, pelagic sedimentation conditions prevailed, similar to those of the late Miocene. The last 0.7 m.y. has been a period of relatively intense winnowing on Lord Howe Rise but not on Ontong-Java Plateau. The coarse-fraction data have both long- and short-period fluctuations. Long-period fluctuations at Site 591 average about 850 *10**3 yr./cycle and those at Site 586 average 430*10**3 yr./cycle. The highest amplitudes are found in the Pliocene and Quaternary sections. The short-period fluctuations range from 100 to 48*10**3 yr./cycle at Site 586 and from 250 to 33 *10**3 yr./cycle at Site 591. The effects of local fluctuations of productivity and winnowing have modified the primary orbital forcing signals at these two sites to yield complex paleoceanographic records.