986 resultados para Gamma-Tial Intermetallic Alloy
Resumo:
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% LaNi4Al0.4Mn0.3Co0.3 (x = 0, 1, 5) hydrogen storage alloys have been investigated systematically. XRD shows that though the main phase of the matrix alloy remains unchanged after LaNi4Al0.4Mn0.3Co0.3 alloy is added, a new specimen is formed. The amount of the new specimen increases with increasing x. SEM-EDS analysis indicates that the V-based solid solution phase is mainly composed of V, Cr and Ni; C14 Laves phase is mainly composed of Ni, Zr and V; the new specimen containing La is mainly composed of Zr, V and Ni. The electrochemical measurements suggest that the activation performance, the low temperature discharge ability, the high rate discharge ability and the cyclic stability of composite alloy electrodes increase greatly with the growth of x.
Resumo:
Ti-Zr-V-Mn-Ni-based multi-component alloys demonstrate high discharge capacity in KOH electrolyte. However, the drastic decrease in their discharge capacities makes them unsuitable for use as negative electrode material in the Ni/MH battery. In present work, Ni is partially replaced by Cr in the Ti-Zr-V-Mn-Ni-based alloys to improve their cycle life. The effects of Cr substitution on microstructures and the electrochemical characteristics of the alloys are investigated. It is found that Cr substitution is very effective to improve the cyclic durability of the alloys although the discharge capacity decreases with changing x from 0.05 to 0.20. Some kinetic performances have been also investigated using electrochemical impedance spectroscopy (EIS) and potentiostatic discharge technique.
Resumo:
Large-scale arrays consist of dendritic single-crystalline Ag/Pd alloy nanostructures are synthesized for the first time. A simple galvanic replacement reaction is introduced to grow these arrays directly on Ag substrates. The morphology of the products strongly depended on the reaction temperature and the concentration of H2PdCl4 solution. The mechanism of the formation of alloy and the dendritic morphology has been discussed. These alloy arrays exhibit high surface-enhanced Raman scattering (SERS) activity and may have potential applications in investigation of "in situ" Pd catalytic reactions using SERS. Moreover, electrocatalytic measurements suggest that the obtained dendritic Ag/Pd alloy nanostructures exhibit electrocatytic activity toward the oxidation of formic acid.
Resumo:
Mg-8Gd-1Dy-0.3Zn (wt.%) alloy was prepared by high-pressure die-casting technique. The thermal stability, mechanical properties at temperature range from room temperature to 573 K and strengthening mechanism was investigated. The results showed that the die-cast state alloy was mainly composed of fine cellular equiaxed grain. The fine porosity-free skin region was related to the aggregation of rare earth elements. The long lamellar-shaped stacking compound containing Zn and polygon-shaped precipitate were observed along the grain boundaries. The die-cast sample exhibited high mechanical properties and good thermal stability until 523 K.
Resumo:
The surface modification of hydroxyapatite (HA) nanoparticles by the ring opening polymerization (ROP) of gamma-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) was proposed to prepare the poly(gamma-benzyl-L-glutamate) (PBLG)-grafted HA nanoparticles (PBLG-g-HA) for the first time. HA nanoparticles were firstly treated by 3-aminopropylthriethoxysilane (APS) and then the terminal amino groups of the modified HA particles initiated the ROP of BLG-NCA to obtain PBLG-g-HA. The process was monitored by XPS and FT-IR. The surface grafting amounts of PBLG on HA ranging from 12.1 to 43.1% were characterized by thermal gravimetric analysis (TGA). The powder X-ray diffraction (XRD) analysis confirmed that the ROP only underwent on the surface of HA nanoparticles without changing its bulk properties. The SEM measurement showed that the PBLG-g-HA hybrid could form an interpenetrating net structure in the self-assembly process.
Resumo:
BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.
Resumo:
BACKGROUND: How to promote the formation of the gamma-form in a certain propylene-ethylene copolymer (PPR) under atmospheric conditions is significant for theoretical considerations and practical applications. Taking the epitaxial relationship between the alpha-form and gamma-form into account, it is expected that incorporation of some extrinsic alpha-crystals, developed by propylene homopolymer (PPH), can enhance the crystallization of the gamma-form of the PPR component in PPR/PPH blends.RESULTS: The PPH component in the blends first crystallizes from the melt, and its melting point and crystal growth rate decrease with increasing PPR fraction. On the other hand, first-formed alpha-crystals of the PPH component can induce the lateral growth of PPR chains on themselves, indicated by sheaf-like crystal morphology and positive birefringence, which is in turn responsible for enhanced crystallization of the gamma-form of the PPR component.
Resumo:
The reaction rates of the hydrogenation of maleic anhydride (MAH) and succinic anhydride (SAH) were significantly accelerated and the selectivity to gamma-butyrolactone (GBL) was enhanced largely when the reaction mixture was pressurized by a non-reactant of CO2. Above 99% selectivity to GBL was achieved in 14 MPa CO2, the superior selectivity in scCO(2) was attributed to that MAH and/or SAH could be extracted to CO2 phase and separated from H2O, the hydrolysis were thus minimized and so the selectivity to GBL was improved.
Resumo:
The selective hydrogenation of nitrobenzene (NB) over Ni/gamma-Al2O3 Catalysts Was investigated using different media of dense phase CO2, ethanol, and n-hexane. In dense phase CO2, the total rate of NB hydrogenation was larger than that in organic solvents under similar reaction conditions; the selectivity to the desired product, aniline, was almost 100% over the whole conversion range of 0-100%. The phase behavior of the reactant mixture in/under dense phase CO2 was examined at reaction conditions. In situ high-pressure Fourier transform infrared measurements were made to study the molecular interactions Of CO2 with the following reactant and reaction intermediates: NB, nitrosobenzene (NSB), and N-phenylhydroxylamine (PHA). Dense phase CO2 strongly interacts with NB, NSB, and PHA, modifying the reactivity of each species and contributing to positive effects on the reaction rate and the selectivity to aniline. A possible reaction pathway for the hydrogenation of NB in/under dense phase CO2 over Ni/gamma-Al2O3 is also proposed.
Resumo:
The surface structure of the iron oxide nanoparticles obtained by the co-precipitation method has been investigated, and a thin layer of alpha-FeOOH absorbed on surface of the nanoparticle is confirmed by analyses of Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS) and surface photovoltage spectroscopy (SPS). After annealed at 400 degrees C, the alpha-FeOOH can be converted to gamma-Fe2O3. The simple-annealed procedure resulted in the formation of Fe3O4@gamma-Fe2O3 core/shell structure with improved stability and a higher magnetic saturation value, and also the simple method can be used to obtain core/shell structure in other similar system.
Resumo:
Water-soluble supramolecular inclusion complexes of alpha-, beta-, and gamma-cyclodextrin-bicapped C-60 (CD/C-60) have been investigated for their photoinduced DNA cleavage activities, with the aim to assess the potential health risks of this class of compounds and to understand the effect of host cyclodextrins having different cavity dimensions. Factors such as incubation temperature, irradiation time, and concentration of NADH or CDs/C-60 supramolecular inclusion complexes have been examined. The results show that alpha-, beta-, and gamma-CDs/C-60 are all able to cleave double-stranded DNA under visible light irradiation in the presence of NADH. However, a difference in the photoinduced DNA cleavage efficiency is observed, where the cleavage efficiency increases in the order of alpha-, beta-, and gamma-CD/C-60. The difference is attributed to the different aggregation behavior of the inclusion complexes in aqueous solution, which is correlated to the cavity dimension of the host cyclodextrin molecules.
Resumo:
The ageing behavior of an extruded Mg-7Y-4Gd-0.5Zn-0.4Zr alloy during ageing at 250 degrees C has been investigated. Two types of phases have been observed during the ageing process. One is a lamellar phase with a 14H long periodic stacking structure, the other is the beta' phase with an ellipsoidal morphology. The increased mechanical properties of the peak-aged alloy are mainly ascribed to the presence of both of these phases at peak hardness.
Resumo:
Die cast AZ91-xYmm (x = 0-0.8 wt.%) magnesium alloys with excellent tensile properties and corrosion resistance behavior were successfully prepared by a simple addition of yttrium-rich misch metal (Ymm) to AZ91. Influences of Ymm on the microstructure, mechanical properties and corrosion behavior of AZ91 were investigated. The results showed that addition of Ymm to die cast AZ91 alloy could re. ne the microstructure including primary alpha-Mg and eutectic beta-Mg17Al12. When the content of Ymm reached 0.8 wt.% a small quantity of Al2Y phase would form. The tensile properties were improved greatly with addition of Ymm to AZ91. The creep rate of the AZ91-Ymm alloys, tested at 150 degrees C/50MPa, was one order of magnitude lower than that of AZ91. When addition of Ymm was more than 0.3 wt.%, the salt-spray corrosion resistance of AZ91-Ymm alloys could be 30-40 times of that of AZ91. The improvement of corrosion resistance with addition of Ymm was confirmed by the results of electrochemical polarization experiments. Mechanism of the improvement of mechanical properties and corrosion behavior caused by Ymm was also discussed.
Resumo:
Microstructures and mechanical properties of the Mg-5Y-4Gd-xZn-0.4Zr alloys have been investigated. These results show that the Mg-5Y-4Gd-0.5Zn-0.4Zr alloy in the peak-aged condition exhibits the highest tensile strength, and the values of the ultimate tensile strength and yield tensile strength are 370 and 300 MPa, respectively. It is suggested that addition of 0.5% Zn has a great effect on age hardening response. The long periodic stacking structure has been found in these Zn-containing alloys, and the volume fraction of this phase increases with increasing Zn addition. This phase plays an important role in improvement of the mechanical properties, especially for the elongations. The beta' phase precipitates during the ageing process are responsible for the improvement of the mechanical properties of the alloys in the peak-aged condition.
Resumo:
High-pressure die-cast (HPDC) Mg-4Al-4RE-0.4Mn (RE = La, Ce) magnesium alloys were prepared and their microstructures, tensile properties, and creep behavior have been investigated in detail. The results show that two binary Al-Ce phases, Al11Ce3 and Al2Ce, are formed mainly along grain boundaries in Mg-4Al-4Ce-0.4Mn alloy, while the phase composition of Mg-4Al-4La-0.4Mn alloy contains only alpha-Mg and Al11La3. The Al11La3 phase comprises large coverage of the grain boundary region and complicated morphologies. Compared with Al11Ce3 phase, the higher volume fraction and better thermal stability of Al11La3 have resulted in better-fortified grain boundaries of the Mg-4Al-4La-0.4Mn alloy. Thus higher tensile strength and creep resistance could be obtained in Mg-4Al-4La-0.4Mn alloy in comparison with that of Mg-4Al-4Ce-0.4Mn. Results of the theoretical calculation that the stability of Al11La3 is the highest among four Al-RE intermetallic compounds supports the experimental results further.