984 resultados para GALLIUM NITRIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the similar to 0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 degrees C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 degrees C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr(3+) ions exhibit luminescent features not present in other Cr(3+)-containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr(3+)-related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy.   The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructural processes of Cr(N,C) coating formation by thermoreactive deposition and diffusion (TRD) on pre-nitrocarburised H13 tool steel were studied. Both nitrocarburising and TRD were performed in fluidized bed furnaces at 570 °C. During TRD, chromium was transferred from chromium powder in the fluidized bed, to the nitrocarburised substrates by gas-phase reactions initiated by reaction of HCl gas with the chromium. Addition of 30% H2 to the input inert gas was found to increase the rate of coating formation, although hydrogen reduction resulted in rapid loss of nitrogen to the surface. The reason for the increased rate of coating formation could not be established without further investigation, although several possible explanations have been proposed. It was found that porosity and the formation of an iron nitride ‘cover layer’ during nitrocarburising were the biggest influences on the microstructure of the Cr(N,C) coating. Microstructural characterization of the coatings was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four different tool steel materials, P20, H13, M2 and D2, were nitrocarburised at 570°C in a fluidised bed furnace. The reactive diffusion of nitrogen and carbon into the various substrate microstructures is compared and related to the different alloy carbide distributions. The effect of carbon bearing gas (carbon dioxide, natural gas) on carbon absorption is reported, as well as its influence on compound layer growth and porosity. Partial reduction of Fe3O4 at the surface resulted in the formation of a complex, epsi-nitride containing oxide layer. In H13, carbon was deeply absorbed throughout the entire diffusion zone, affecting the growth of grain boundary cementite, nitrogen diffusivity and the sharpness of the compound layer: diffusion zone interface. When natural gas was used, carbon became highly concentrated in the compound layer, while surface decarburisation occurred with carbon dioxide. These microstructural effects are discussed in relation to hardness profiles, and compound layer hardness and ductility. The surfaces were characterised using glow discharge optical emission spectroscopy, optical and scanning electron microscopy and X-ray diffraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical vapour deposition (PVD) titanium aluminium nitride coated cutting tools are used extensively in global manufacturing for reducing production costs and improving productivity in a number of aggressive metal-cutting operations, namely, dry and high-speed machining. In this investigation, the performance of Ti1−xAlxN and Ti1−x−yAlxCryN coatings was assessed on Co-HSS twist drills used to machine grey cast iron. The failure criterion for drills was defined as a critical sized flank wear land at the outer corners of the drills. Using this criterion, the average tool life of uncoated twist drills was increased by factors of 2.5, 3.0 and 3.0 by Ti0.59Al0.41N, Ti0.27Al0.19Cr0.54N and Ti0.21Al0.14Cr0.65N coatings, respectively. Notwithstanding the similar increase in average tool life, the Ti1−x−yAlxCryN coatings produced more consistent results than the Ti1−xAlxN coated drills with standard deviations of 67, 3 and 19 holes, respectively. This result has significant practical implications in manufacturing, since drills are not replaced on an individual basis, but rather on a preset tool change frequency. The present paper discusses the performance of Ti1−xAlxN and Ti1−x−yAlxCryN coated drills in terms of average and practical drill life and concludes with remarks on the characterisation of PVD coatings and their significance on the performance of Co-HSS twist drills when dry machining grey cast iron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathodic arc evaporation (CAE) is a widely used technique for generating highly ionised plasma from which hard, wear-resistant PVD coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as ‘macroparticles’. In this study, the effect of cathode poisoning was investigated as a method to reduce the number of macroparticles in PVD coatings. While the study focuses on the reduction of macroparticles in titanium nitride coatings, the outcomes and key findings can be broadly applied to the cathodic arc process, in particular, for the reduction of macroparticles in more advanced CAE coatings. The results support earlier findings that have shown that poisoning of the cathode can reduce the number of macroparticles emitted from the arc spot. The results of glow discharge optical emission spectroscopy (GD-OES) showed that the titanium content of the coatings varied little between the respective coatings despite changes in the deposition pressure from 0.1 to 1.2 Pa. The GD-OES results also showed the presence of oxide contamination at the surface of the coatings, which was significantly reduced with increasing deposition pressure. The coatings were also deposited onto high-speed steel twist drills to compare the metal-cutting performance when dry drilling a workpiece of cast iron. The results of the drill tests showed that tool life increased with a reduction in the number of macroparticles.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewalls and their lateral sizes has been observed and it is a consequence of the anisotropic formation of the coating layers. A growth mechanism is also proposed for these growth phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-yield multiwalled boron nitride (BN) nanotubes have been produced using a ball milling-annealing method. The BN nanotubes with a diameter less than 10 nm and a well-crystallized multiwalled structure were formed via an in situ nitriding reaction. The systematic investigation of the formation process at different annealing temperatures and for different times suggested that the formation of the unique multiwalled structure was attributed by a two-dimensional growth of the BN phase and a nonmetal catalytic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional (1D) nanomaterials including nanotubes, nanowires and nanorods have many new properties, functionalities and a large range of promising applications. A major challenge for these future industrial applications is the large-quantity production. We report that the ball milling and annealing process has the potential to achieve the mass production. Several examples including C, BN nanotubes and SiC, Zn nanowires are presented to demonstrate such capability. In addition, both size and structure of 1D nanomaterials can be controlled by varying processing conditions. New growth mechanisms involved in the process have been investigated and the high-energy ball milling has an important role in the formation of these 1D nanomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of defects in hexagonal boron nitride under low-energy argon bombardment has been studied by near-edge X-ray absorption fine structure (NEXAFS) around B and N K-edges. Breaking of B-N bonds and creation of nitrogen vacancies has been identified from the B K-edge, followed by the formation of molecular nitrogen, N2, at interstitial positions. The presence of N2 produces a sharp resonance in the low-resolution NEXAFS spectra around N K-edge, showing the characteristic vibrational fine structure in high-resolution measurements. Several new peaks in NEXAFS spectra have been assigned to boron or nitrogen interstitials, in good agreement with theoretical predictions. © 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin-polarized density functional calculations reveal that magnetism can be induced by carbon adatoms on boron nitride nanotubes (BNNTs) and BN hexagonal sheets. As a result of the localization of impurity states, these hybrid sp-electron systems are spin-polarized, with a local magnetic moment of 2.0 μB per C adatom regardless of the tube diameter and the bonding between the C atom and the BNNTs/BN sheets. An analysis of orbital hybridization indicates that two valence electrons participate in the bonding and the remaining two electrons of the C adatom are confined at the adsorption site and contribute to the magnetism accordingly. The effective interaction distance between the C-induced magnetic moments is evaluated. In terms of the diffusion barrier and the adsorption energy of C adatoms on the BN nanotubes/ sheets, a fabrication method for BN-C-based functional nanodevices is proposed, and a series of virtual building blocks for functional devices are illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of fluidised bed reactors for surface alloying is reviewed. Research at Deakin has includes the use of chemical vapour deposition to form chromium rich layers on ferrous substrates, including stainless and tool steel grades. These layers can be modified to carbide or nitride if required by the end application. The deposition of aluminium and silicon has also been successfully achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadium nitride (VN) is currently one of the most promising materials for electrodes of supercapacitors. The structure and electrochemical properties of VN synthesized by temperature-programmed NH3 reduction of V2O5 are analyzed in this paper. Vanadium nitride produced via this route has distinctive structural characteristics. VN mimics the shape of the initial V2O5 precursor indicating a pronounced direct attachment of nitride grains. The particles have domains of grains with a preferential orientation (texture). The large volume of pores in VN is represented by the range of 15−110 nm. VN demonstrates capacitive properties in three different types of aqueous electrolytes, 1 M KOH, 1 M H2SO4, and 3 M NaCl. The material has an acceptable rate capability in all electrolytes, showing about 80% of its maximal capacitance at a current load of 1 A/g in galvanostatic charging/discharging experiments. The capacitance of 186 F/g is observed in 1 M KOH electrolyte at 1 A/g. The previously reported negative effect of material loading on the capacitance is significantly suppressed. The observed electrochemical characteristics related to the application of this material in supercapacitors can be correlated with the crystalline structure of the nitride and the composition of its surface layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process for producing boron nitride nanotubes and nanotube films, which process comprises heating a liquid composition comprising boron particles and a metal compound, wherein heating takes place at a temperature of from 800-1300 DEG C in a gaseous atmosphere containing nitrogen that causes boron nitride nanotubes to grow, and wherein the boron particles have an average particle size of less than 100 nm, and wherein the metal compound is selected such that it promotes the growth of boron nitride nanotubes during heating.