Structure and capacitive properties of porous nanocrystalline VN produced by NH3 reduction of V2O5


Autoria(s): Glushenkov, Alexey M.; Hulicova-Jurcakova, Denisa; Llewellyn, David; Lu, Gao Qing; Chen, Ying
Data(s)

01/01/2010

Resumo

Vanadium nitride (VN) is currently one of the most promising materials for electrodes of supercapacitors. The structure and electrochemical properties of VN synthesized by temperature-programmed NH<sub>3 </sub>reduction of V<sub>2</sub>O<sub>5</sub> are analyzed in this paper. Vanadium nitride produced via this route has distinctive structural characteristics. VN mimics the shape of the initial V<sub>2</sub>O<sub>5 </sub>precursor indicating a pronounced direct attachment of nitride grains. The particles have domains of grains with a preferential orientation (texture). The large volume of pores in VN is represented by the range of 15−110 nm. VN demonstrates capacitive properties in three different types of aqueous electrolytes, 1 M KOH, 1 M H<sub>2</sub>SO<sub>4</sub>, and 3 M NaCl. The material has an acceptable rate capability in all electrolytes, showing about 80% of its maximal capacitance at a current load of 1 A/g in galvanostatic charging/discharging experiments. The capacitance of 186 F/g is observed in 1 M KOH electrolyte at 1 A/g. The previously reported negative effect of material loading on the capacitance is significantly suppressed. The observed electrochemical characteristics related to the application of this material in supercapacitors can be correlated with the crystalline structure of the nitride and the composition of its surface layer.

Identificador

http://hdl.handle.net/10536/DRO/DU:30035406

Idioma(s)

eng

Publicador

American Chemical Society

Relação

http://dro.deakin.edu.au/eserv/DU:30035406/glushenkov-structureandcapacitive-2010.pdf

http://dx.doi.org/10.1021/cm901729x

Tipo

Journal Article