895 resultados para Fourier-transform infrared spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stability of C-60 films under the bombardment of 1.95 GeV Kr ions is investigated. The irradiated C-60 films were analyzed by Fourier Transform Infrared (FTIR) spectroscopy and Raman scattering technique. The analytical results indicate that the irradiation induced a decrease of icosahedral symmetry of C-60 molecule and damage of C-60 films; different vibration modes of C-60 molecule have different irradiation sensitivities; the mean efficient damage radius obtained from experimental data is about 1.47 nm, which is in good agreement with thermal spike model prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report for the first time on the synthesis of ZnO nanocrystallites in conjugated polymer (PPV) nanofibers by the coupling of the in situ/blend methods and electrospinning. These composite nanofibers were characterized by fluorescence microscopy, atomic force microscope (AFM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ethylenediamine trimolybdate (ENTMo) can show unusually photochromic and thermochromic properties and there exists in the difference of chromic mechanisms, which has been proved in our previous work [I]. In this paper, X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and laser Raman spectroscopy (LRS) of the colored samples are characterized and analyzed in detail. The crystal structure, the inorganic skeleton and the microenvironment of center ions of the colored samples do not substantively change except distortion. The color difference of the photochromic and the thermochromic samples is discussed and that the difference of reduction sites result in their different chromic mechanisms is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mm NH4+ (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of dysprosium complex doped xerogels with the same first ligand (acac = acetylacetone) and different neutral ligands were synthesized in situ via a sol-gel process. The Fourier transform infrared (FTIR) spectra, diffuse reflectance (DR) spectra, and near-infrared (NIR) luminescent properties of dysprosium complexes and dysprosium complex doped xerogels are described in detail. The results reveal that the dysprosium complex is successfully synthesized in situ in the corresponding xerogel. Excitation at the maximum absorption wavelength of the ligands resulted in the characteristic NIR luminescence of the Dy3+ ion, which contributes to the energy transfer from the ligands to the central Dy3+ ion in both the dysprosium complexes and xerogels via an antenna effect.