997 resultados para Finite Operator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that first order logic is strictly weaker than fixed point logic over every infinite classes of finite ordered structures with unary relations: Over these classes there is always an inductive unary relation which cannot be defined by a first-order formula, even when every inductive sentence (i.e., closed formula) can be expressed in first-order over this particular class. Our proof first establishes a property valid for every unary relation definable by first-order logic over these classes which is peculiar to classes of ordered structures with unary relations. In a second step we show that this property itself can be expressed in fixed point logic and can be used to construct a non-elementary unary relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an explicit and easy-to-verify characterization for subsets in finite total orders (infinitely many of them in general) to be uniformly definable by a first-order formula. From this characterization we derive immediately that Beth's definability theorem does not hold in any class of finite total orders, as well as that McColm's first conjecture is true for all classes of finite total orders. Another consequence is a natural 0-1 law for definable subsets on finite total orders expressed as a statement about the possible densities of first-order definable subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formal tools like finite-state model checkers have proven useful in verifying the correctness of systems of bounded size and for hardening single system components against arbitrary inputs. However, conventional applications of these techniques are not well suited to characterizing emergent behaviors of large compositions of processes. In this paper, we present a methodology by which arbitrarily large compositions of components can, if sufficient conditions are proven concerning properties of small compositions, be modeled and completely verified by performing formal verifications upon only a finite set of compositions. The sufficient conditions take the form of reductions, which are claims that particular sequences of components will be causally indistinguishable from other shorter sequences of components. We show how this methodology can be applied to a variety of network protocol applications, including two features of the HTTP protocol, a simple active networking applet, and a proposed web cache consistency algorithm. We also doing discuss its applicability to framing protocol design goals and to representing systems which employ non-model-checking verification methodologies. Finally, we briefly discuss how we hope to broaden this methodology to more general topological compositions of network applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable λ-terms. More interestingly, every finite-rank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference. This is in contrast to System F where the finite rank restriction for every finite rank at 3 and above has neither principal typings nor decidable type inference. This is also in contrast to earlier presentations of intersection types where the status of these properties is not known for the finite-rank restrictions at 3 and above.Furthermore, the notion of principal typings for our system involves only one operation, substitution, rather than several operations (not all substitution-based) as in earlier presentations of principality for intersection types (of unrestricted rank). A unification-based type inference algorithm is presented using a new form of unification, β-unification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buried heat sources can be investigated by examining thermal infrared images and comparing these with the results of theoretical models which predict the thermal anomaly a given heat source may generate. Key factors influencing surface temperature include the geometry and temperature of the heat source, the surface meteorological environment, and the thermal conductivity and anisotropy of the rock. In general, a geothermal heat flux of greater than 2% of solar insolation is required to produce a detectable thermal anomaly in a thermal infrared image. A heat source of, for example, 2-300K greater than the average surface temperature must be a t depth shallower than 50m for the detection of the anomaly in a thermal infrared image, for typical terrestrial conditions. Atmospheric factors are of critical importance. While the mean atmospheric temperature has little significance, the convection is a dominant factor, and can act to swamp the thermal signature entirely. Given a steady state heat source that produces a detectable thermal anomaly, it is possible to loosely constrain the physical properties of the heat source and surrounding rock, using the surface thermal anomaly as a basis. The success of this technique is highly dependent on the degree to which the physical properties of the host rock are known. Important parameters include the surface thermal properties and thermal conductivity of the rock. Modelling of transient thermal situations was carried out, to assess the effect of time dependant thermal fluxes. One-dimensional finite element models can be readily and accurately applied to the investigation of diurnal heat flow, as with thermal inertia models. Diurnal thermal models of environments on Earth, the Moon and Mars were carried out using finite elements and found to be consistent with published measurements. The heat flow from an injection of hot lava into a near surface lava tube was considered. While this approach was useful for study, and long term monitoring in inhospitable areas, it was found to have little hazard warning utility, as the time taken for the thermal energy to propagate to the surface in dry rock (several months) in very long. The resolution of the thermal infrared imaging system is an important factor. Presently available satellite based systems such as Landsat (resolution of 120m) are inadequate for detailed study of geothermal anomalies. Airborne systems, such as TIMS (variable resolution of 3-6m) are much more useful for discriminating small buried heat sources. Planned improvements in the resolution of satellite based systems will broaden the potential for application of the techniques developed in this thesis. It is important to note, however, that adequate spatial resolution is a necessary but not sufficient condition for successful application of these techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with uniformly convergent finite element and finite difference methods for numerically solving singularly perturbed two-point boundary value problems. We examine the following four problems: (i) high order problem of reaction-diffusion type; (ii) high order problem of convection-diffusion type; (iii) second order interior turning point problem; (iv) semilinear reaction-diffusion problem. Firstly, we consider high order problems of reaction-diffusion type and convection-diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear forms is proved and representation results for the solutions of such problems are given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve a high order of convergence which is uniform in the perturbation parameter. Piecewise polynomial Galerkin finite element methods are then constructed on a Shishkin mesh. High order convergence results, which are uniform in the perturbation parameter, are obtained in various norms. Secondly, we investigate linear second order problems with interior turning points. Piecewise linear Galerkin finite element methods are generated on various piecewise equidistant meshes designed for such problems. These methods are shown to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usual L2 norm. Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic properties of solutions to this problem are discussed and analysed. Two simple finite difference schemes on Shishkin meshes are applied to the problem. They are proved to be uniformly convergent of second order and fourth order respectively. Existence and uniqueness of a solution to both schemes are investigated. Numerical results for the above methods are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with uniformly convergent finite element methods for numerically solving singularly perturbed parabolic partial differential equations in one space variable. First, we use Petrov-Galerkin finite element methods to generate three schemes for such problems, each of these schemes uses exponentially fitted elements in space. Two of them are lumped and the other is non-lumped. On meshes which are either arbitrary or slightly restricted, we derive global energy norm and L2 norm error bounds, uniformly in the diffusion parameter. Under some reasonable global assumptions together with realistic local assumptions on the solution and its derivatives, we prove that these exponentially fitted schemes are locally uniformly convergent, with order one, in a discrete L∞norm both outside and inside the boundary layer. We next analyse a streamline diffusion scheme on a Shishkin mesh for a model singularly perturbed parabolic partial differential equation. The method with piecewise linear space-time elements is shown, under reasonable assumptions on the solution, to be convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 outside layers and almost order 3/4 inside the boundary layer. Numerical results for the above schemes are presented. Finally, we examine a cell vertex finite volume method which is applied to a model time-dependent convection-diffusion problem. Local errors away from all layers are obtained in the l2 seminorm by using techniques from finite element analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the notion of flat surfaces of finite type in the 3- sphere, give the algebro-geometric description in terms of spectral curves and polynomial Killing fields, and show that finite type flat surfaces generated by curves on S2 with periodic curvature functions are dense in the space of all flat surfaces generated by curves on S2 with periodic curvature functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a critical introduction to Alfred Schutz’s sociology of the multiple reality and an enterprise that seeks to reassess and reconstruct the Schutzian project. In the first part of the study, I inquire into Schutz’s biographical context that surrounds the germination of this conception and I analyse the main texts of Schutz where he has dealt directly with ‘finite provinces of meaning.’ On the basis of this analysis, I suggest and discuss, in Part II, several solutions to the shortcomings of the theoretical system that Schutz drew upon the sociological problem of multiple reality. Specifically, I discuss problems related to the structure, the dynamics, and the interrelationing of finite provinces of meaning as well as the way they relate to the questions of narrativity, experience, space, time, and identity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A popular way to account for unobserved heterogeneity is to assume that the data are drawn from a finite mixture distribution. A barrier to using finite mixture models is that parameters that could previously be estimated in stages must now be estimated jointly: using mixture distributions destroys any additive separability of the log-likelihood function. We show, however, that an extension of the EM algorithm reintroduces additive separability, thus allowing one to estimate parameters sequentially during each maximization step. In establishing this result, we develop a broad class of estimators for mixture models. Returning to the likelihood problem, we show that, relative to full information maximum likelihood, our sequential estimator can generate large computational savings with little loss of efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain an upper bound on the time available for quantum computation for a given quantum computer and decohering environment with quantum error correction implemented. First, we derive an explicit quantum evolution operator for the logical qubits and show that it has the same form as that for the physical qubits but with a reduced coupling strength to the environment. Using this evolution operator, we find the trace distance between the real and ideal states of the logical qubits in two cases. For a super-Ohmic bath, the trace distance saturates, while for Ohmic or sub-Ohmic baths, there is a finite time before the trace distance exceeds a value set by the user. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theory of hypoellipticity and unique ergodicity for semilinear parabolic stochastic PDEs with "polynomial" nonlinearities and additive noise, considered as abstract evolution equations in some Hilbert space. It is shown that if Hörmander's bracket condition holds at every point of this Hilbert space, then a lower bound on the Malliavin covariance operatorμt can be obtained. Informally, this bound can be read as "Fix any finite-dimensional projection on a subspace of sufficiently regular functions. Then the eigenfunctions of μt with small eigenvalues have only a very small component in the image of Π." We also show how to use a priori bounds on the solutions to the equation to obtain good control on the dependency of the bounds on the Malliavin matrix on the initial condition. These bounds are sufficient in many cases to obtain the asymptotic strong Feller property introduced in [HM06]. One of the main novel technical tools is an almost sure bound from below on the size of "Wiener polynomials," where the coefficients are possibly non-adapted stochastic processes satisfying a Lips chitz condition. By exploiting the polynomial structure of the equations, this result can be used to replace Norris' lemma, which is unavailable in the present context. We conclude by showing that the two-dimensional stochastic Navier-Stokes equations and a large class of reaction-diffusion equations fit the framework of our theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The model: groups of Lie-Chevalley type and buildingsThis paper is not the presentation of a completed theory but rather a report on a search progressing as in the natural sciences in order to better understand the relationship between groups and incidence geometry, in some future sought-after theory Τ. The search is based on assumptions and on wishes some of which are time-dependent, variations being forced, in particular, by the search itself.A major historical reference for this subject is, needless to say, Klein's Erlangen Programme. Klein's views were raised to a powerful theory thanks to the geometric interpretation of the simple Lie groups due to Tits (see for instance), particularly his theory of buildings and of groups with a BN-pair (or Tits systems). Let us briefly recall some striking features of this.Let G be a group of Lie-Chevalley type of rank r, denned over GF(q), q = pn, p prime. Let Xr denote the Dynkin diagram of G. To these data corresponds a unique thick building B(G) of rank r over the Coxeter diagram Xr (assuming we forget arrows provided by the Dynkin diagram). It turns out that B(G) can be constructed in a uniform way for all G, from a fixed p-Sylow subgroup U of G, its normalizer NG(U) and the r maximal subgroups of G containing NG(U).