Principality and Decidable Type Inference for Finite-Rank Intersection Types
Data(s) |
20/10/2011
20/10/2011
06/11/1998
|
---|---|
Resumo |
Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable λ-terms. More interestingly, every finite-rank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference. This is in contrast to System F where the finite rank restriction for every finite rank at 3 and above has neither principal typings nor decidable type inference. This is also in contrast to earlier presentations of intersection types where the status of these properties is not known for the finite-rank restrictions at 3 and above.Furthermore, the notion of principal typings for our system involves only one operation, substitution, rather than several operations (not all substitution-based) as in earlier presentations of principality for intersection types (of unrestricted rank). A unification-based type inference algorithm is presented using a new form of unification, β-unification. NATO (CRG 97107); National Science Foundation (CCR-9417382); Engineering and Physical Sciences Research Council (GR/L 36963) |
Identificador |
Kfoury, Assaf J.; Wells, Joe B.. "Principality and Decidable Type Inference for Finite-Rank Intersection Types", Technical Report BUCS-1998-015, Computer Science Department, Boston University, November 6, 1998. [Available from: http://hdl.handle.net/2144/1771] |
Idioma(s) |
en_US |
Publicador |
Boston University Computer Science Department |
Relação |
BUCS Technical Reports;BUCS-TR-1998-015 |
Tipo |
Technical Report |