893 resultados para Field of force
Resumo:
This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.
Resumo:
Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.
Resumo:
Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.
Resumo:
People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.
Resumo:
The field of collaborative health planning faces significant challenges posed by the lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges have been exaggerated by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and evidence-based decision-making. Some studies suggest that the use of ICT-based tools in health planning may lead to: increased collaboration between stakeholder sand the community; improve the accuracy and quality of the decision making process; and, improve the availability of data and information for health decision-makers as well as health service planners. Research has justified the use of decision support systems (DSS) in planning for healthy cities as these systems have been found to improve the planning process. DSS are information communication technology (ICT) tools including geographic information systems (GIS) that provide the mechanisms to help decision-makers and related stake holders assess complex problems and solve these in a meaningful way. Consequently, it is now more possible than ever before to make use of ICT-based tools in health planning. However, knowledge about the nature and use of DSS within collaborative health planning is relatively limited. In particular, little research has been conducted in terms of evaluating the impact of adopting these tools upon stakeholders, policy-makers and decision-makers within the health planning field. This paper presents an integrated method that has been developed to facilitate an informed decision-making process to assist in the health planning process. Specifically, the paper describes the participatory process that has been adopted to develop an online GIS-based DSS for health planners. The literature states that the overall aim of DSS is to improve the efficiency of the decisions made by stakeholders, optimising their overall performance and minimizing judgmental biases. For this reason, the paper examines the effectiveness and impact of an innovative online GIS-based DSS on health planners. The case study of the online DSS is set within a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This unique setting-based initiative is named the Logan-Beaudesert Health Coalition (LBHC).The paper outlines the impact occurred by implementing the ICT-based DSS. In conclusion, the paper emphasizes upon the need for the proposed tool for enhancing health planning.
Resumo:
The efficacy of road safety countermeasures to deter motorists from engaging in illegal behaviours is extremely important when considering the personal and economic impact of road accidents on the community. Within many countries, deterrence theory has remained a cornerstone to criminology and criminal justice policy, particularly within the field of road safety, as policy makers and enforcement agencies attempt to increase perceptions regarding the certainty, severity and swiftness of sanctions for those who engage in illegal motoring behaviours. Using the Australian experience (particularly the tremendous amount of research into drink driving), the current paper reviews the principles underpinning deterrence theory, the utilisation of the approach within some contemporary road safety initiatives (e.g., Random Breath Testing) as well as highlights some methods to enhance a deterrent effect. The paper also provides direction for future deterrence-based research, in particular, considering the powerful impact of non-legal sanctions, punishment avoidance as well as creating culturally embedded behavioural change.
Resumo:
Poly(D,L-lactide) is a degradable polymer with a long history of use in medical applications. It is strong and stiff and degrades over the course of months into lactic acid, a body-own substance. In the field of tissue engineering it is commonly used to fabricate scaffolds. Stereolithography is a high resolution rapid prototyping technique by which designed 3D objects can be built using photo-initiated radical polymerisations. Poly(D,Llactide) (PDLLA) networks can be obtained by photopolymerisation of oligomers functionalised with unsaturated groups. In this work, PDLLA oligomers of varying architectures (arm lengths, numbers of arms) were synthesised and end-functionalised with methacrylate groups. These macromers were photo-crosslinked in solution to yield PDLLA networks of different architectures. The influence of the network architecture on its physical properties was studied.
Resumo:
Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.