934 resultados para Fibrocollagenous tube
Resumo:
Time-dependent nanoscale plasticity of nanocrystalline nickel at room temperature was critically explored through a series of micropillar creep and quasi-static compression experiments on rod and tube specimens fabricated by electron beam lithography and electroplating. Enhanced creep rates in tubes as compared to rods, establishes the facilitating role played by the free surface in time-dependent deformation. Creep stress exponent, n, and strain-rate sensitivity, m, were compared to examine connections between creep and the rate-dependent plasticity, if any. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.
Resumo:
Thermal decomposition studies of 3-carene, a bio-fuel, have been carried out behind the reflected shock wave in a single pulse shock tube for temperature ranging from 920 K to 1220 K. The observed products in thermal decomposition of 3-carene are acetylene, allene, butadiene, isoprene, cyclopentadiene, hexatriene, benzene, toluene and p-xylene. The overall rate constant for 3-carene decomposition was found to be k/s(-1) = 10((9.95 +/- 0.54)) exp(-40.88 +/- 2.71 kcal mol(-1) /RT). Ab-initio theoretical calculations were carried out to find the minimum energy pathway that could explain the formation of the observed products in the thermal decomposition experiments. These calculations were carried out at B3LYP/6-311 + G(d,p) and G3 level of theories. A kinetic mechanism explaining the observed products in the thermal decomposition experiments has been derived. It is concluded that the linear hydrocarbons are the primary products in the pyrolysis of 3-carene.
Resumo:
应用湍流马赫数修正的非稳态可压缩性K-ε-f-gr四方程湍流模型,模拟了半开口狭长管道中重复布置的障碍物引起的湍流火焰加速现象。结果表明,障碍物产生的扰动对加强燃烧和湍流输运的影响很大。随着火焰向前传播,火焰穿过障碍物时发生变形,反应区越来越长,且火焰速度逐渐上升。同时,火焰速度和管内压力的计算结果与实验测量值吻合良好,修正后的湍流模型能较真实地模拟障碍物管内预混火焰的发展过程。
Resumo:
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.
Resumo:
Vertically aligned carbon nanotubes were synthesized by plasma enhanced chemical vapor deposition using nickel as a metal catalyst. High resolution transmission electron microscopy analysis of the particle found at the tip of the tubes reveals the presence of a metastable carbide Ni3C. Since the carbide is found to decompose upon annealing at 600 degreesC, we suggest that Ni3C is formed after the growth is stopped due to the rapid cooling of the Ni-C interstitial solid solution. A detailed description of the tip growth mechanism is given, that accounts for the composite structure of the tube walls. The shape and size of the catalytic particle determine the concentration gradient that drives the diffusion of C atoms across and though the metal. (C) 2004 American Institute of Physics.
Resumo:
OBJECTIVES: It remains controversial whether patients with severe disease of the internal carotid artery and a coexisting stenotic lesion downstream would benefit from a carotid endarterectomy (CEA) of the proximal lesion. The aim of this study was to simulate the hemodynamic and wall shear effects of in-tandem internal carotid artery stenosis using a computational fluid dynamic (CFD) idealized model to give insight into the possible consequences of CEA on these lesions. METHODS: A CFD model of steady viscous flow in a rigid tube with two asymmetric stenoses was introduced to simulate blood flow in arteries with multiple constrictions. The effect of varying the distance between the two stenoses, and the severity of the upstream stenosis on the pressure and wall shear stress (WSS) distributions on the second plaque, was investigated. The influence of the relative positions of the two stenoses was also assessed. RESULTS: The distance between the plaques was found to have minimal influence on the overall hemodynamic effect except for the presence of a zone of low WSS (range -20 to 30 dyne/cm2) adjacent to both lesions when the two stenoses were sufficiently close (<4 times the arterial diameter). The upstream stenosis was protective if it was larger than the downstream stenosis. The relative positions of the stenoses were found to influence the WSS but not the pressure distribution. CONCLUSIONS: The geometry and positions of the lesions need to be considered when considering the hemodynamic effects of an in-tandem stenosis. Low WSS is thought to cause endothelial dysfunction and initiate atheroma formation. The fact that there was a flow recirculation zone with low WSS in between the two stenoses may demonstrate how two closely positioned plaques may merge into one larger lesion. Decision making for CEA may need to take into account the hemodynamic situation when an in-tandem stenosis is found. CFD may aid in the risk stratification of patients with this problem.
Resumo:
An investigation into the three-dimensional propagation of the transmitted shock wave in a square cross-section chamber was described in this paper, and the work was carried out numerically by solving the Euler equations with a dispersion-controlled scheme. Computational images were constructed from the density distribution of the transmitted shock wave discharging from the open end of the square shock tube and compared directly with holographic interferograms available for CFD validation. Two cases of the transmitted shock wave propagating at different Mach numbers in the same geometry were simulated. A special shock reflection system near the corner of the square cross-section chamber was observed, consisting of four shock waves: the transmitted shock wave, two reflection shock waves and a Mach stem. A contact surface may appear in the four-shock system when the transmitted shock wave becomes stronger. Both the secondary shock wave and the primary vortex loop are three-dimensional in the present case due to the non-uniform flow expansion behind the transmitted shock.
Resumo:
In this paper, focusing of a toroidal shock wave propagating from an annular shock tube into a cylindrical chamber was investigated numerically with the dispersion controlled dissipation (DCD) scheme. The first case for an incident Mach number of 1.5 was conducted and compared with experiments for validation. Then, several cases were calculated for higher incident Mach numbers varying from 2.0 to 5.0, and complicated flow structures were observed. The numerical study was mainly focused on two aspects: focusing process and flow structures. The process, including diffraction, focusing, and reflection, is displayed to reveal the focusing mechanism, and the flow structures at different incident. Mach numbers are used to demonstrate shock reflection styles and focusing characteristics.
Resumo:
An investigation into influence of obstructions on premixed flame propagation has been carried out in a semi-open tube. It is found that there exists flame acceleration and rising overpressure along the path of flame due to obstacles. According to the magnitude of flame speeds, the propagation of flame in the tube can be classified into three regimes: the quenching, the choking and the detonation regimes. In premixed flames near the flammability limits, the flame is observed first to accelerate and then to quench itself after propagating past a certain number of obstacles. In the choking regime, the maximum flame speeds are somewhat below the combustion product sound speeds, and insensitive to the blockage ratio. In the more sensitive mixtures, the transition to detonation (DDT) occurs when the equivalence ratio increases. The transition is not observed for the less sensitive mixtures. The dependence of overpressure on blockage ratio is not monotonous. Furthermore, a numerical study of flame acceleration and overpressure with the unsteady compressible flow model is performed, and the agreement between the simulation and measurements is good.
Resumo:
We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.
Resumo:
A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.
Resumo:
A probe utilizing the bipolar pulse method to measure the density of a conducting fluid has been developed. The probe is specially designed such that the concentration of a stream tube can be sampled continuously. The density was determined indirectly from the measurement of solution conductivity. The probe was calibrated using standard NaCl solutions of varying molarity and was able to rapidly determine the density of a fluid with continuously varying conductance. Measurements of the conductivity profiles, corresponding density profiles, and their fluctuation levels are demonstrated in a channel flow with an electrolyte injected from a slot in one wall.
Resumo:
An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.