991 resultados para Fan-Complete Space
Resumo:
In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.
The following is my formulation of the Cesari fixed point method:
Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.
Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:
(i) Py = PWy.
(ii) y = (P + (I - P)W)y.
Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:
(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).
(2) The function y just defined is continuous from PГ into B.
(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.
Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).
The three theorems of this thesis can now be easily stated.
Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.
Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:
(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖
(2)P2Г is convex.
Then i(Г, W, P1) = i(Г, W, P2).
Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).
Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.
Resumo:
The evoked response, a signal present in the electro-encephalogram when specific sense modalities are stimulated with brief sensory inputs, has not yet revealed as much about brain function as it apparently promised when first recorded in the late 1940's. One of the problems has been to record the responses at a large number of points on the surface of the head; thus in order to achieve greater spatial resolution than previously attained, a 50-channel recording system was designed to monitor experiments with human visually evoked responses.
Conventional voltage versus time plots of the responses were found inadequate as a means of making qualitative studies of such a large data space. This problem was solved by creating a graphical display of the responses in the form of equipotential maps of the activity at successive instants during the complete response. In order to ascertain the necessary complexity of any models of the responses, factor analytic procedures were used to show that models characterized by only five or six independent parameters could adequately represent the variability in all recording channels.
One type of equivalent source for the responses which meets these specifications is the electrostatic dipole. Two different dipole models were studied: the dipole in a homogeneous sphere and the dipole in a sphere comprised of two spherical shells (of different conductivities) concentric with and enclosing a homogeneous sphere of a third conductivity. These models were used to determine nonlinear least squares fits of dipole parameters to a given potential distribution on the surface of a spherical approximation to the head. Numerous tests of the procedures were conducted with problems having known solutions. After these theoretical studies demonstrated the applicability of the technique, the models were used to determine inverse solutions for the evoked response potentials at various times throughout the responses. It was found that reliable estimates of the location and strength of cortical activity were obtained, and that the two models differed only slightly in their inverse solutions. These techniques enabled information flow in the brain, as indicated by locations and strengths of active sites, to be followed throughout the evoked response.
Resumo:
In the present paper, we propose a novel method for measuring the even aberrations of lithographic projection optics by use of optimized phase-shifting marks on the test mask. The line/space ratio of the phase-shifting marks is optimized to obtain the maximum sensitivities of Zernike coefficients corresponding to even aberrations. Spherical aberration and astigmatism can be calculated from the focus shifts of phase-shifting gratings oriented at 0 degrees, 45 degrees, 90 degrees and 135 degrees at multiple illumination settings. The PROLITH simulation results show that, the measurement accuracy of spherical aberration and astigmatism obviously increase, after the optimization of the measurement mark. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A general solution is presented for water waves generated by an arbitrary movement of the bed (in space and time) in a two-dimensional fluid domain with a uniform depth. The integral solution which is developed is based on a linearized approximation to the complete (nonlinear) set of governing equations. The general solution is evaluated for the specific case of a uniform upthrust or downthrow of a block section of the bed; two time-displacement histories of the bed movement are considered.
An integral solution (based on a linear theory) is also developed for a three-dimensional fluid domain of uniform depth for a class of bed movements which are axially symmetric. The integral solution is evaluated for the specific case of a block upthrust or downthrow of a section of the bed, circular in planform, with a time-displacement history identical to one of the motions used in the two-dimensional model.
Since the linear solutions are developed from a linearized approximation of the complete nonlinear description of wave behavior, the applicability of these solutions is investigated. Two types of non-linear effects are found which limit the applicability of the linear theory: (1) large nonlinear effects which occur in the region of generation during the bed movement, and (2) the gradual growth of nonlinear effects during wave propagation.
A model of wave behavior, which includes, in an approximate manner, both linear and nonlinear effects is presented for computing wave profiles after the linear theory has become invalid due to the growth of nonlinearities during wave propagation.
An experimental program has been conducted to confirm both the linear model for the two-dimensional fluid domain and the strategy suggested for determining wave profiles during propagation after the linear theory becomes invalid. The effect of a more general time-displacement history of the moving bed than those employed in the theoretical models is also investigated experimentally.
The linear theory is found to accurately approximate the wave behavior in the region of generation whenever the total displacement of the bed is much less than the water depth. Curves are developed and confirmed by the experiments which predict gross features of the lead wave propagating from the region of generation once the values of certain nondimensional parameters (which characterize the generation process) are known. For example, the maximum amplitude of the lead wave propagating from the region of generation has been found to never exceed approximately one-half of the total bed displacement. The gross features of the tsunami resulting from the Alaskan earthquake of 27 March 1964 can be estimated from the results of this study.
Solar flare particle propagation--comparison of a new analytic solution with spacecraft measurements
Resumo:
A new analytic solution has been obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion with ĸr = constant and ĸƟ ∝ r2. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events have been observed with the Caltech Solar and Galactic Cosmic Ray Experiment aboard OGO-6. Detailed comparisons of the predictions of the new solution with these observations of 1-70 MeV protons show that the model adequately describes both the rise and decay times, indicating that ĸr = constant is a better description of conditions inside 1 AU than is ĸr ∝ r. With an outer boundary at 2.7 AU, a solar wind velocity of 400 km/sec, and a radial diffusion coefficient ĸr ≈ 2-8 x 1020 cm2/sec, the model gives reasonable fits to the time-profile of 1-10 MeV protons from "classical" flare-associated events. It is not necessary to invoke a scatter-free region near the sun in order to reproduce the fast rise times observed for directly-connected events. The new solution also yields a time-evolution for the vector anisotropy which agrees well with previously reported observations.
In addition, the new solution predicts that, during the decay phase, a typical convex spectral feature initially at energy To will move to lower energies at an exponential rate given by TKINK = Toexp(-t/ƬKINK). Assuming adiabatic deceleration and a boundary at 2.7 AU, the solution yields ƬKINK ≈ 100h, which is faster than the measured ~200h time constant and slower than the adiabatic rate of ~78h at 1 AU. Two possible explanations are that the boundary is at ~5 AU or that some other energy-change process is operative.
Resumo:
For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.
Resumo:
A experiência dos engenheiros estruturais e os conhecimentos adquiridos pelo uso de materiais e novas tecnologias, têm ocasionado estruturas de aço e mistas (aço-concreto) de passarelas cada vez mais ousadas. Este fato tem gerado estruturas de passarelas esbeltas, e consequentemente, alterando os seus estados de limite de serviço e último associados ao seu projeto. Uma consequência direta desta tendência de projeto é o aumento considerável das vibrações das estruturas. Portanto, a presente investigação foi realizada com base em um modelo de carregamento mais realista, desenvolvido para incorporar os efeitos dinâmicos induzidos pela caminhada de pessoas. O modelo de carregamento considera a subida e a descida da massa efetiva do corpo em cada passo. A posição da carga dinâmica também foi alterada de acordo com a posição do pedestre sobre a estrutura e a função do tempo gerada, possui uma variação espacial e temporal. O efeito do calcanhar do pedestre também foi incorporado na análise. O modelo estrutural investigado baseia-se em uma passarela tubular (aço-concreto), medindo 82,5m. A estrutura é composta por três vãos (32,5 m, 20,0 m e 17,5 m, respectivamente) e dois balanços (7,5 m e 5,0 m, respectivamente). O sistema estrutural é constituído por perfis de aço tubular e uma laje de concreto, e é atualmente utilizada para travessia de pedestres. Esta investigação é realizada com base em resultados experimentais, relacionando a resposta dinâmica da passarela com as obtidas via modelos de elementos finitos. O modelo computacional proposto adota as técnicas de refinamento de malha, usualmente presente em simulações pelo método de elementos finitos. O modelo de elementos finitos foi desenvolvido e validado com resultados experimentais. Este modelo de passarela tubular permitiu uma avaliação dinâmica completa, investigando especialmente ao conforto humano e seus limites de utilização associados à vibração. A resposta dinâmica do sistema, em termos de acelerações de pico, foi obtida e comparada com os valores limites propostos por diversos autores e padrões de projeto. As acelerações de pico encontradas na presente análise indicou que a passarela tubular investigada apresentou problemas relacionados com o conforto humano. Por isso, foi detectado que este tipo de estrutura pode atingir níveis de vibrações excessivas que podem comprometer o conforto do usuário na passarela e especialmente a sua segurança.