983 resultados para Escape peaks
Resumo:
Työssä tutkitaan ilmalämpöpumppujen kokonaisvaltaista vaikutusta sähköverkkoon. Tarkastelu aloitetaan lämpöpumppujen toiminnasta ja rakenteesta, josta jatketaan laitteen käytettävyyteen ja muiden lämmitysmenetelmien vertailuun. Sähköisten ominaisuuksien tarkastelussa pohditaan ilmalämpöpumppujen vaikutusta suomalaiseen sähköverkkoon muun muassa yleissähkötekniikan, taloudellisuuden ja energiatehokkuuden sekä häiriöiden kannalta. Tämä tutkielma rajoittuu pientaloihin, ja niihin asennettuihin ilma-ilmalämpöpumppuihin. Työn loppupäätelmänä on, että ilmalämpöpumppujen käytöstä ei juuri aiheudu vaikutuksia suomalaiseen sähköverkkoon. Suurimmat ilmalämpöpumppujen käytöstä syntyvät seuraukset kohdistuvat sähköverkkoyhtiöihin, joihin ilmalämpöpumput aiheuttavat taloudellisia menetyksiä. Suuret ja tulevaisuudessa kasvavat ilmalämpöpumppumäärät aiheuttavat sähköntuotantoon lisätehontarvetta huippukuorman aikaan. Toisaalta välitehoalueella tehontarve sekä energiankulutus pienenevät. Sähköverkoissa ei ole toistaiseksi havaittu ilmalämpöpumpuista johtuvia häiriöitä.
Resumo:
The electrochemical behavior of paraquat on Pt, Au and carbon fiber ultramicroelectrodes were studied in laboratory samples by square wave voltammetry at high frequencies. The results showed two reversible peaks for paraquat reduction, in agreement to the literature data. The first peak was associated to the reduction of paraquat molecule in solution, with the further adsorption of the intermediate on the electrode surface. This adsorbed species undergoes to electroreduction in a reaction associated to the second voltammetric peak. The variation in pH and square wave parameters showed the best conditions to reduce paraquat as pH 5.0, frequency as high as 1000 s-1, scan increment of 2 mV and square wave amplitude of 50 mV. At such conditions, a variation of paraquat concentrations from 4.3 x 10-6 to 1.66 x 10-4 mol L-1 presented values for the detection limit equal to 3.9, 6.2 and 20.3 ppb on Pt, Au and carbon, respectively, at 1000 s-1. These values are quite below17 the allowed limit of paraquat in drinking water.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
The use of fluidized bed combustors to burn coal is largely studied to permit the addition of limestone to capture SO2. The particle size for coal and limestone is an important parameter in this process. Thermogravimetry (TG) is used to elucidate the combustion and sulfation processes, but the experimental parameters must be evaluated to be representative in fluidized bed combustors. In the present study the effect of particle size is analyzed in the calcination of limestones and the combustion of coal through the thermogravimetric curve for limestone and derivative thermogravimetric curve for coal. Small peaks representing mass losses between 400 and 500 ºC are observed due to the jumping of particles out of the crucible. This effect, recognized as decrepitation is observed for mid-sized particles provoked by the release of water vapor trapped within their lattice.
Resumo:
This work reports the use of square wave voltammetry (SWV) to analyse the electrochemical reduction of dichlorvos (2, 2-dichlorovinyl-dimethylphosphate) in spiked pure and natural waters. SWV measurements were carried out in 0.5 mol L-1 Na2SO4 aqueous solutions at pH 5, prepared with water originated from three different sources, namely, one sample of purified water and others from two urban creeks in São Carlos County. In all cases, two reduction peaks were observed, at potentials of -0.15 and -1.05 V vs Ag/AgCl, with both current and potential being dependent on pesticide concentration. This allowed the calculation of the following detection limits: 1.0, 2.5 and 3.0x10-8 mol L-1 for purified, Gregorio creek and Monjolinho creek waters, respectively, in a working range between 2.0x10-7 and 1.4x10-6 mol L-1. Recovery measurements found values higher than 80% in all cases, for an added concentration of 4.0 x 10-7 mol L-1 of dichlorvos in each solution. All analytical experiments were performed in triplicate and showed a standard deviation always less than 3%.
Resumo:
Three mixtures of triterpenes (maniladiol and breine; alpha and beta-amyrin; lupenone, alpha and beta-amyrinone) were isolated from Protium heptaphyllum March resin. The structural identification was based on NMR and mass spectrometry data. Lupenone, and alpha and beta-amyrinone were not reported before as constituents of this resin. The resin was submitted to methylation and acetylation reactions. The pure and derivatized resins and the mixtures (maniladiol and breine; alpha and beta-amyrin) were analyzed by TG and DSC. The TG curves revealed that the derivatization decreases the thermal stability of the resin. The DSC curves showed peaks that can be assigned to evaporation and phase transitions processes.
Resumo:
In this work we describe the processing of poly(styrene sulphonate) films (PSS) doped with neodymium (Nd). Optical density measurements in the UV-Vis-NIR region show the typical bands observed for neodymium chloride (NdCl3) in solution. In the case of films, the intensity ratio between the peaks at 800 nm (4I9/2 -> 4F5/2 + ²H7/2) and 580 nm (4I9/2 -> 4G5/2 + ²G7/2) is equal to 0.83. Infrared spectra present an enhancement in the absorption region of aromatic rings. Site selective luminescence spectroscopy shows that the incorporation of Nd introduces a hipsochromic shift and a line shape definition in UV luminescence compared to PSS film, decreasing the interaction between aromatic groups. In addition, the film exhibits an intense radiative transition at 1061 nm (4F3/2->4I11/2), comparable to the one present in crystalline materials doped with Nd.
Resumo:
In this report, we studied the thickness effect on the optical and morphological properties of self-assembled (SA) poly(p-phenylenevinylene) (PPV) films, wich were processed with 5 and 75 layers from a PPV precursor polymer and dodecylbenzenesulfonate, and then, thermally converted at 230 °C. The increase of the film thickness yielded more intense peaks in the vibrational spectral range. The electron-phonon coupling was quantified by the Huang - Rhys factor, that shows the effects on the polymer chain mobility in the interface substrate/polymer. A strong emission anisotropy r=0.57 was observed for the film with 5 layers of thickness decreasing to 0.34 for the film with 75 layers. Finally, the surface topology of the films was measured using Atomic Force Microscopy.
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.
Resumo:
The process of hydrogen desorption from amorphous silicon (ɑ-Si) nanoparticles grown by plasmaenhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 °C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in ɑ-Si is about 1.15 eV. It is shown that this result is valid for ɑ-Si:H films, too
Resumo:
Los cambios en los usos del suelo han contribuido de manera importante al incremento de gases de efecto invernadero en la atmósfera, especialmente de dióxido de carbono, aumentando sus emisiones desde 1970 en un 80%. Estos cambios causan la alteración de los suelos provocando un impacto sobre el ciclo del carbono, aumentando las tasas de descomposición de la fracción orgánica creando así un flujo de CO2 a la atmosfera. Entre las recomendaciones del Panel Intergubernamental de expertos sobre el Cambio Climático (IPCC, en inglés), y contemplado en el Protocolo de Kyoto, se encuentra el proceso de secuestro de carbono en suelos, que implica la eliminación del CO2 atmosférico por parte de las plantas y su almacenamiento como materia orgánica del suelo. Para poder favorecer dicho proceso, en un determinado tipo de ecosistema, es fundamental conocer cuáles son los factores que gobiernan la respiración del suelo y el impacto que tienen los diferentes usos en la emisión de CO2. En el presente trabajo se han estudiado 4 usos del suelo representativos del secano aragonés: un monocultivo de cebada en siembra directa (NT), un suelo abandonado labrado (AC), un suelo abandonado no alterado (AU) y un suelo forestal (FR) con el objetivo de conocer sus tasas de respiración, la influencia de diferentes parámetros edáficos en ellas, y proponer cambios en el uso del suelo que ayuden a mitigar estas emisiones. Además, se ha dedicado un apartado para conocer cómo influyen diferentes técnicas de fertilización nitrogenada (mineral y orgánica) en la respiración de un monocultivo de cebada en siembra directa. En cuanto a los usos, los resultados obtenidos tanto in situ como en laboratorio muestran una mayor respiración en AC, siendo los valores más bajos los de NT y FR. Una de las principales conclusiones es que la supresión del laboreo y del periodo de barbecho largo, así como la conversión de tierras abandonadas y marginales a cultivos y zonas forestales se presentan en este tipo de ecosistemas como prácticas de secuestro de carbono. En el estudio de aplicación de fertilizantes, no se observó ningún cambio en la respiración del suelo después de la aplicación de nitrógeno mineral. En cambio, el suelo fertilizado con purín sí que mostró picos de emisión durante las siguientes horas a la incorporación de éste, debido fundamentalmente a su alto contenido de carbono lábil.
Resumo:
In the last two decades of studying the Solar Energetic Particle (SEP) phenomenon, intensive emphasis has been put on how and when and where these SEPs are injected into interplanetary space. It is well known that SEPs are related to solar flares and CMEs. However, the role of each in the acceleration of SEPs has been under debate since the major role was taken from flares ascribed to CMEs step by step after the skylab mission, which started the era of CME spaceborn observations. Since then, the shock wave generated by powerful CMEs in between 2-5 solar radii is considered the major accelerator. The current paradigm interprets the prolonged proton intensity-time profile in gradual SEP events as a direct effect of accelerated SEPs by shock wave propagating in the interplanetary medium. Thus the powerful CME is thought of as a starter for the acceleration and its shock wave as a continuing accelerator to result in such an intensity-time profile. Generally it is believed that a single powerful CME which might or might not be associated with a flare is always the reason behind such gradual events.
In this work we use the Energetic and Relativistic Nucleus and Electrons ERNE instrument on board Solar and Heliospheric Observatory SOHO to present an empirical study to show the possibility of multiple accelerations in SEP events. In the beginning we found 18 double-peaked SEP events by examining 88 SEP events. The peaks in the intensity-time profile were separated by 3-24 hours. We divided the SEP events according to possible multiple acceleration into four groups and in one of these groups we find evidence for multiple acceleration in velocity dispersion and change in the abundance ratio associated at transition to the second peak. Then we explored the intensity-time profiles of all SEP events during solar cycle 23 and found that most of the SEP events are associated with multiple eruptions at the Sun and we call those events as Multi-Eruption Solar Energetic Particles (MESEP) events. We use the data available by Large Angle and Spectrometric Coronograph LASCO on board SOHO to determine the CME associated with such events and YOHKOH and GOES satellites data to determine the flare associated with such events. We found four types of MESEP according to the appearance of the peaks in the intensity-time profile in large variation of energy levels. We found that it is not possible to determine whether the peaks are related to an eruption at the Sun or not, only by examining the anisotropy flux, He/p ratio and velocity dispersion. Then we chose a rare event in which there is evidence of SEP acceleration from behind previous CME. This work resulted in a conclusion which is inconsistent with the current SEP paradigm. Then we discovered through examining another MESEP event, that energetic particles accelerated by a second CME can penetrate a previous CME-driven decelerating shock. Finally, we report the previous two MESEP events with new two events and find a common basis for second CME SEPs penetrating previous decelerating shocks. This phenomenon is reported for the first time and expected to have significant impact on modification of the current paradigm of the solar energetic particle events.
Resumo:
The electrochemical behavior of N-nitrosothiazolidine carboxylic acid (NTAC) on gold and hanging mercury electrodes, using the cyclic and square wave voltammetries, was studied. Whereas NTAC suffer reduction in a single step on the mercury electrode, two peaks appears on the cyclic voltammograms on the gold electrode, one anodic peak overlaying the gold oxide process at 1.2 V and one cathodic peak at -0.41 V vs Ag/AgCl, KCl 3.0 mol L-1. The cathodic peak depends on the previous oxidation of NTAC at the electrode surface, presents irreversible and adsorption controlled characteristics and it is suitable for quantitative purposes.
Resumo:
A HPLC method was developed to quantify thymine and thymidine impurities in stavudine bulk drug. The separation was carried out in isocratic mode using methanol/water (20:80) as mobile phase, a C18 column and UV detection at 266 nm. The method provided selectivity based on peak purities and resolution among peaks. It was linear over the range of 0.5-5.0 µg/mL. The quantitation limits were 0.021 µg/mL for thymine and 0.134 µg/mL for thymidine. The average accuracies of three concentrations ranged from 97.06 to 102.61% and precision was close to 1%. The method showed robustness, remaining unaffected by deliberate variations in relevant parameters.
Resumo:
The use of analytical pyrolysis combined with gas chromatography/mass spectrometry (Py-GC/MS) to determine the syringyl/guaiacyl ratio (S/G) in lignins from Eucalyptus spp woods was investigated. Sample of E. grandis and "E. urograndis" wood, with and without extractives, were subjected to pyrolysis from 300 ºC to 600 ºC. The products that results from pyrolysis were identified by mass spectrometry and the S/G ratio was determined based on the areas of the peaks corresponding to the guaiacyl and syringyl derivatives. The best S/G estimation is achieved when pyrolysis is carried out at 550 ºC. Extractives and carbohydrate present in the woods do not interfere with the results.